首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[structures: see text] Bacteriochlorins (tetrahydroporphyrins) are attractive for diverse photochemical applications owing to their strong absorption in the near-infrared spectral region, as exemplified by the bacterial photosynthetic pigment bacteriochlorophyll a, yet often are labile toward dehydrogenation to give the chlorin. Tetradehydrocorrins (ring-contracted tetrahydroporphyrins) are attractive for studies of catalysis analogous to that of vitamin B12. An eight-step synthesis toward such tetrahydroporphyrinic macrocycles begins with p-tolualdehyde and proceeds to a dihydrodipyrrin-acetal (1) bearing a geminal dimethyl group and a p-tolyl substituent. Self-condensation of 1 in CH3CN containing BF3 x OEt2 at room temperature afforded a readily separable mixture of two free base bacteriochlorins and a free base B,D-tetradehydrocorrin. Each bacteriochlorin contains two geminal dimethyl groups to lock-in the bacteriochlorin hydrogenation level, p-tolyl substituents at opposing (2,12) beta-positions, and the absence (H-BC) or presence (MeO-BC) of a methoxy group at the 5- (meso) position. The B,D-tetradehydrocorrin (TDC) lies equidistant between the hydrogenation levels of corrin and corrole, is enantiomeric, and contains two geminal dimethyl groups, 2,12-di-p-tolyl substituents, and an acetal group at the pyrroline-pyrrole junction. Examination of the effect of the concentrations of 1 (2.5-50 mM) and BF3 x OEt2 (10-500 mM) revealed a different response surface for each of H-BC, MeO-BC, and TDC, enabling relatively selective preparation of a given macrocycle. The highest isolated yield of each was 49, 30, and 66%, respectively. The macrocycles are stable to routine handling in light and air. The bacteriochlorins display characteristic spectral features; for example, H-BC exhibits near-IR absorption (lambda(Qy) = 737 nm, epsilon(Qy) = 130,000 M(-1) cm(-1)) and emission (lambda(em) = 744 nm, phi(f) = 0.14). In summary, this simple entry to stable bacteriochlorins and tetradehydrocorrins should facilitate a wide variety of applications.  相似文献   

2.
在四氢呋喃中加入金属卟吩、 强碱(无水氢化钠)和金属盐MXn(M=Cu, Ni, Pd), 合成了细菌卟吩的5种过渡金属配合物, 该方法减少了反应时间, 提高了反应产率. 通过紫外-可见光谱、 核磁共振氢谱、 质谱等方法对所合成的化合物进行了表征, 并研究了其光学性质. 结果表明, 细菌卟吩在近红外区有明显的吸收峰, 且具有较高的强度, 相比于细菌卟吩配体, 金属配合物吸收光谱中的Qx和Qy带均发生了明显的红移. 细菌卟吩配体与锌配合物具有发光性质, 为Qy(0,0)荧光, 而铜、 镍等金属配合物并没有检测到荧光峰.  相似文献   

3.
Bacteriochlorins have wide potential in photochemistry because of their strong absorption of near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty. Established acid-catalysis conditions [BF(3)·OEt(2) in CH(3)CN or TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2)] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl group in the pyrroline ring) afford stable free base bacteriochlorins. Here, InBr(3) in CH(3)CN at room temperature was found to give directly the corresponding indium bacteriochlorin. Application of the new acid catalysis conditions has afforded four indium bacteriochlorins bearing aryl, alkyl/ester, or no substituents at the β-pyrrolic positions. The indium bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741-782 nm range, which is shifted bathochromically by 22-32 nm versus the analogous free base species, (ii) fluorescence quantum yields (0.011-0.026) and average singlet lifetime (270 ps) diminished by an order of magnitude versus that (0.13-0.25; 4.0 ns) for the free base analogues, and (iii) higher average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 μs) of the lowest triplet excited state compared to the free base compounds. The differences in the excited-state properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-fold greater rate constant for S(1) → T(1) intersystem crossing, which stems from the heavy-atom effect on spin-orbit coupling. The trends in optical properties of the indium bacteriochlorins versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with frontier molecular-orbital energies and energy gaps derived from density functional theory calculations. Collectively the synthesis, photophysical properties, and electronic characteristics of the indium bacteriochlorins and free base analogues reported herein should aid in the further design of such chromophores for diverse applications.  相似文献   

4.
5-Methoxy-8,8,18,18-tetramethyl-2,12-di-p-tolylbacteriochlorin (MeO-BC) undergoes regioselective electrophilic bromination with NBS to give the 15-bromo analogue (MeO-BC-Br15) in 85% yield. By contrast, the bacteriochlorin lacking the 5-methoxy group (8,8,18,18-tetramethyl-2,12-di-p-tolylbacteriochlorin, H-BC) gives a mixture of two monobromo- and two dibromobacteriochlorins. Deuterium exchange of both bacteriochlorins (H-BC and MeO-BC) in acidic media (TFA-d) occurs preferentially at the beta-pyrrole positions (3, 13) > unhindered meso-positions (5, 15 for H-BC; 15 for MeO-BC) > hindered meso-positions (10, 20). The 15-bromo-5-methoxybacteriochlorin MeO-BC-Br15 was subjected to three types of Pd-mediated coupling reactions (Suzuki, Sonogashira, Hartwig-Buchwald) to give six bacteriochlorins bearing functional groups at the 15-position (49% to 85% yield). The groups include 4-(tert-butoxycarbonylmethoxy)phenyl, 4-pyridyl, 3,5-diformylphenyl, phenylethynyl, TIPS-ethynyl, and N-benzamido. The presence of the 15-ethynyl moiety shifts the position of the long-wavelength Qy band from 732 nm to approximately 753 nm. The ability to introduce a range of groups at a specific site enables synthetic bacteriochlorins to be tailored for a variety of applications.  相似文献   

5.
Abstract New classes of synthetic chlorin and bacteriochlorin macrocycles are characterized by narrow spectral widths, tunable absorption and fluorescence features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (<1 to >10 ns) and chemical stability. Such properties make dyad constructs based on synthetic chlorin and bacteriochlorin units intriguing candidates for the development of NIR molecular imaging probes. In this study, two such dyads (FbC-FbB and ZnC-FbB) were investigated. The dyads contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. In both constructs, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5 ps)(-1) and a yield of >99%. Thus, each dyad effectively behaves as a single chromophore with an exceptionally large Stokes shift (85 nm for FbC-FbB and 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambda(f) = 760 nm, Phi(f) = 0.19, tau approximately 5.5 ns in toluene). The long-wavelength transitions (absorption, emission) of each constituent of each dyad exhibit narrow (相似文献   

6.
Photodynamic therapy (PDT) greatly suffers from the weak NIR-absorption, oxygen dependence and poor stability of photosensitizers (PSs). Herein, inspired by natural bacteriochlorin, we develop a bacteriochlorin analogue, tetrafluorophenyl bacteriochlorin (FBC), by one-step reduction of tetrafluorophenyl porphyrin (TFPP). FBC can realize deep tissue penetration, benefitting from the strong NIR absorption. The reactive oxygen species (ROS) generation capacity of FBC can retain around 60% with a 1.0 cm-thick pork skin as the barrier. Besides, FBC could not only produce oxygen-dependent 1O2, but also generate less oxygen-dependent O2˙ and ˙OH to achieve excellent PDT even in hypoxic tumors. Moreover, FBC exhibits an ultra-high stability and it is almost unchanged even under visible light at room temperature for 15 months. Interestingly, the high reactivity of the fluorophenyl group makes it easy for FBC to produce FBC derivatives. A biocompatible FBC nanogel could be directly formed by blending FBC with SH–PEG–SH. The FBC nanogel displays excellent photodynamic efficacy in vitro and in vivo. Thus, FBC would be a promising PS for the clinical PDT of deep tumors.

A hypoxia-tolerant photosensitizer FBC-based nanoplatform with strong NIR absorbance and ultra-high stability was facilely prepared for PDT of deep tumors.  相似文献   

7.
Access to metallobacteriochlorins is essential for investigation of a wide variety of fundamental photochemical processes, yet relatively few synthetic metallobacteriochlorins have been prepared. Members of a set of synthetic bacteriochlorins bearing 0-4 carbonyl groups (1, 2, or 4 carboethoxy substituents, or an annulated imide moiety) were examined under two conditions: (i) standard conditions for zincation of porphyrins [Zn(OAc)(2)·2H(2)O in N,N-dimethylformamide (DMF) at 60-80 °C], and (ii) treatment in tetrahydrofuran (THF) with a strong base [e.g., NaH or lithium diisopropylamide (LDA)] followed by a metal reagent MX(n). Zincation of bacteriochlorins that bear 2-4 carbonyl groups proceeded under the former method whereas those with 0-2 carbonyl groups proceeded with NaH or LDA/THF followed by Zn(OTf)(2). The scope of metalation (via NaH or LDA in THF) is as follows: (a) for bacteriochlorins that bear two electron-releasing aryl groups, M = Cu, Zn, Pd, and InCl (but not Mg, Al, Ni, Sn, or Au); (b) for bacteriochlorins that bear two carboethoxy groups, M = Ni, Cu, Zn, Pd, Cd, InCl, and Sn (but not Mg, Al, or Au); and (c) a bacteriochlorin with four carboethoxy groups was metalated with Mg (other metals were not examined). Altogether, 15 metallobacteriochlorins were isolated and characterized. Single-crystal X-ray analysis of 8,8,18,18-tetramethylbacteriochlorin reveals the core geometry provided by the four nitrogen atoms is rectangular; the difference in length of the two sides is ~0.08 ?. Electronic characteristics of (metal-free) bacteriochlorins were probed through electrochemical measurements along with density functional theory calculation of the energies of the frontier molecular orbitals. The photophysical properties (fluorescence yields, triplet yields, singlet and triplet excited-state lifetimes) of the zinc bacteriochlorins are generally similar to those of the metal-free analogues, and to those of the native chromophores bacteriochlorophyll a and bacteriopheophytin a. The availability of diverse metallobacteriochlorins should prove useful in a variety of fundamental photochemical studies and applications.  相似文献   

8.
The photophysical properties of two energy‐transfer dyads that are potential candidates for near‐infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads ( FbC‐FbB and ZnC‐FbB ) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2‐dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ~(5–10 ps)?1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Φ f = 0.19) and singlet excited‐state lifetimes (τ~5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited‐state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC‐FbB than for ZnC‐FbB in a given solvent. For example, the Φ f and τ values for FbC‐FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC‐FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge‐transfer states, as assessed by ground‐state redox potentials and supported by molecular‐orbital energies derived from density functional theory calculations. Controlling the extent of excited‐state quenching in polar media will allow the favorable photophysical properties of the chlorin–bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC‐FbB , 110 nm for ZnC‐FbB ) between the red‐region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (λ f = 760 nm), long bacteriochlorin excited‐state lifetime (~5.5 ns), and narrow (≤20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity‐ and lifetime‐imaging techniques.  相似文献   

9.
Synthetic bacteriochlorins enable systematic tailoring of substituents about the bacteriochlorin chromophore and thereby provide insights concerning the native bacteriochlorophylls of bacterial photosynthesis. Nine free‐base bacteriochlorins (eight prepared previously and one prepared here) have been examined that bear diverse substituents at the 13‐ or 3,13‐positions. The substituents include chalcone (3‐phenylprop‐2‐en‐1‐onyl) derivatives with groups attached to the phenyl moiety, a “reverse chalcone” (3‐phenyl‐3‐oxo‐1‐enyl), and extended chalcones (5‐phenylpenta‐2,4‐dien‐1‐onyl, retinylidenonyl). The spectral and photophysical properties (τs, Φf, Φic, Φisc, τT, kf, kic, kisc) of the bacteriochlorins have been characterized. The bacteriochlorins absorb strongly in the 780–800 nm region and have fluorescence quantum yields (Φf) in the range 0.05–0.11 in toluene and dimethylsulfoxide. Light‐induced electron promotions between orbitals with predominantly substituent or macrocycle character or both may give rise to some net macrocycle ? substituent charge‐transfer character in the lowest and higher singlet excited states as indicated by density functional theory (DFT) and time‐dependent DFT calculations. Such calculations indicated significant participation of molecular orbitals beyond those (HOMO ? 1 to LUMO + 1) in the Gouterman four‐orbital model. Taken together, the studies provide insight into the fundamental properties of bacteriochlorins and illustrate designs for tuning the spectral and photophysical features of these near‐infrared‐absorbing tetrapyrrole chromophores.  相似文献   

10.
Synthetic bacteriochlorins are of interest for fundamental studies in photochemistry because of their strong absorption in the near-infrared spectral region and close similarity with natural bacteriochlorophylls. A de novo route to 5-methoxybacteriochlorins entails self-condensation of a dihydrodipyrrin-acetal, which in turn is prepared from a 2-(2-nitroethyl)pyrrole species and an α,β-unsaturated ketone-acetal (e.g., 1,1-dimethoxy-4-methylpent-3-en-2-one). Here, four new results are reported concerning the synthesis of substituted bacteriochlorins. First, a new, scalable route to 1,1-dimethoxy-4-methylpent-3-en-2-one removes a significant previous impediment to the overall route. Second, the new route was employed to gain access to new α,β-unsaturated ketones and corresponding dihydrodipyrrins bearing alternative substituents in place of the dimethoxy unit. Third, a dihydrodipyrrin bearing a 1,3-dioxolan-2-yl moiety afforded the bacteriochlorin (30% yield) containing a 2-hydroxyethoxy substituent at the 5-position. Fourth, subsequent bromination proceeded regioselectively at the 15-position to give a trans-(5,15)-AB-bacteriochlorin building block. The linear 5,15-substitution pattern is attractive for a number of molecular designs. The results taken together afford deeper understanding of the scope and limitations of the de novo route and also advance the capabilities for tailoring synthetic bacteriochlorins.  相似文献   

11.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

12.
Abstract The photosensitizing properties of two water soluble derivatives of bacteriochlorophyll a , bacteriochlorophyllin a and bacteriochlorin a (lacking the central Mg-ion) were investigated and compared to those of hematoporphyrin derivatives. At physiological pH the oxygen consumption rate of histidine, tryptophan, dithiothreitol and guanosine upon illumination was 3 to 4 times higher when bacteriochlorin a was used as photosensitizer than when hematoporphyrin derivatives were used. Especially bacteriochlorin a proved to be an effective sensitizer for the killing of L929 cells. Because bacteriochlorin a has an absorption maximum at 765 nm in phosphate buffered saline (allowing a light penetration in tissue about ten times larger than at 630 nm) and a high molar absorption coefficient (32 000 M cm−1) it has promising possibilities for the application in photodynamic therapy.  相似文献   

13.
Borbas KE  Ruzié C  Lindsey JS 《Organic letters》2008,10(10):1931-1934
Bacteriochlorins absorb strongly in the near-infrared spectral region and hence are ideally suited for diverse photomedical applications, yet naturally occurring bacteriochlorins have limited stability and synthetic malleability. A de novo route has been exploited to prepare synthetic bacteriochlorins that bear a geminal dimethyl group in each pyrroline ring for stability and a symmetrically branched 1,5-dimethoxypentyl group attached to each pyrrole ring for solubility in lipophilic media.  相似文献   

14.
The ability to tailor synthetic porphyrin, chlorin and bacteriochlorin molecules holds promise for diverse studies in artificial photosynthesis. Toward this goal, the synthesis and photophysical characterization of five tetrapyrrole compounds is described. Each compound bears a surface attachment group. One set contains three meso-substituted porphyrins that differ only in the nature of a surface-binding tether-isophthalic acid, ethynylisophthalic acid or cyanoacrylic acid. The other set includes a porphyrin, chlorin and bacteriochlorin each of which bears an ethynylisophthalic acid tether. The ester derivative of each compound was prepared for solution photophysical characterization studies. The photophysical studies include determination (in toluene or acetonitrile) of the electronic absorption and fluorescence spectra, fluorescence yield and lifetime of the lowest excited singlet state. The excited-state lifetimes range from 1 to 5.6 ns for the five compounds. The radiative rate constant for the excited-state decay was estimated from the photophysical data (fluorescence yield and excited-state lifetime) and from Strickler-Berg analysis of the absorption and fluorescence spectra. The synthesis and characterization of the tetrapyrrole compounds underpin their use as sensitizers in molecular-based solar cells.  相似文献   

15.
Methyl bacteriopyropheophorbide-a derivatives having a series of substituents at the C3 position were prepared and their optical properties were compared with the corresponding chlorin analogues. Two kinds of oxidation reaction (C3-vinyl --> formyl --> carboxy group) were found to be applicable with a little alteration of the free-base bacteriochlorin macrocycles. The Qx and Qy electronic absorption peak positions of synthetic bacteriochlorins in CH2Cl2 were affected by the C3 substituents and found to be more sensitive than those of the chlorins. The observed Qx/Qy peaks in their monomeric states were shifted to a longer wavelength in the order of 1-hydroxyethyl < hydroxymethyl < acetoxymethyl < vinyl < acetyl < carboxy < formyl < 2,2-dicyanoethynyl group. Zinc complex with the C3-hydroxymethyl group formed self-aggregates in a nonpolar organic solvent, which showed the largest red-shift of the Qy band (2380 cm(-1), 726 nm in THF to 878 nm in 1% THF-cyclohexane) among those of the synthetic self-aggregative (bacterio)chlorins examined.  相似文献   

16.
A Pd‐catalyzed cross‐coupling of aryl trifluoroborates with arylsulfonyl chlorides has been successfully achieved. This transformation is a new method for the Suzuki–Miyaura‐type reaction of aryl trifluoroborates via the cleavage of C? S bond, thus providing an alternative synthesis of biaryls. The reported cross‐coupling reactions are tolerant to many common functional groups regardless of electron‐donating or electron‐withdrawing nature, making these transformations attractive alternatives to the traditional Suzuki–Miyaura coupling approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Prediction on amphiphilicity of hypocrellin derivatives   总被引:1,自引:0,他引:1  
Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphi-philicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around C.22 for optimized amphiphilicity.  相似文献   

18.
Near infrared (NIR) photons are ideally suited for photomedicine because they are relatively harmless and penetrate deeply in biological tissues. However, their use is impaired by lack of straightforward methods to synthesize large quantities of stable infrared-absorbing molecules with long-lived excited states. Here we present a one-step synthesis of amphiphilic meso-phenyl halogenated bacteriochlorins, via hydrazide reduction, possessing strong absorption about 750 nm. The reaction proceeds efficiently, in large quantities, with a solid-solid solvent-free methodology, that is characterized by its simplicity, efficiency and minimum environmental impact. The new bacteriochlorins have unprecedented chemical and photophysical properties, namely strong electronic absorption above 720 nm, adequate photostability, low fluorescence quantum yield and n-octanol/water partition coefficients (log POW) ranging from −1.7 to >4, meaning that the library of compounds synthesized in this work is versatile enough to be applied in photodynamic therapy for a range of biological targets.  相似文献   

19.
利用1,3-偶极环加成反应对卟啉大环进行修饰是近年来卟啉研究的一个新热点。环加成产物因在可见光谱长波段范围的特征吸收,在构筑人工光反应体系和用作光动力疗法中的光敏剂等领域有重要应用价值。本文综述了1,3-偶极环加成反应在修饰卟啉化合物方面的研究进展,包括:卟啉作为亲偶极体能与甲亚胺叶立德、硝酮、重氮烷、羰基叶立德、腈氧化物等1,3-偶极子反应生成各种新型杂环稠合卟吩类化合物;卟啉化合物作为1,3-偶极子能与C60等亲偶极体反应,生成β位取代的各种新型卟啉化合物;以及扩展卟啉也可以作为亲偶极体与甲亚胺偶极子发生1,3-偶极环加成反应等。  相似文献   

20.
The first demonstration of the rapid parallel synthesis of diverse prostaglandin derivatives is reported. Upper (alpha-) side chain diversity was introduced to core 1 via the parallel Suzuki coupling of hydroborated alkenes. Conversion to the enones 3 and 9 was followed by the addition of the lower (omega-) side chains as higher-order cuprates 4. Upper side chains incorporating an N-acylsulfonamide protecting group were further transformed into prostaglandin amide analogues. Cleavage from support with HF/pyridine followed by scavenging provided 26 prostaglandin E1 analogues in high purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号