首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

2.
Carnosine (β-alanyl-L-histidine) is a biologically active molecule involved in muscular metabolism. It crystallises in the C; space group with a = 24.725 Å b = 5,427 Å c = 8,004 Å β = 100,2° (Z = 4)

In the crystal, acid and basic groups are engaged in hydrogen bonds whose strength is evaluated through IR frequencies. Molecular conformation in the solid state is defined by τ1 = /t-177° τ2 = −38° φ = −96° ψ = +131° χ1 = 181° χ21 = 62°

NMR study of carnosine in aqueous solution indicates that rotation about CH2-CH2 is free and that the other angles take the following values: Ø −150° or −90° and X1 = 165° or 315°. Infrared and Raman spectra suggest that τ2 undergoes small changes when going from crystal to solution while ψ is close to +150°.  相似文献   


3.
A new complex [Cu (C4H7N3) H2O (4,4′-Hbpy)]·SO4·NO3 was synthesized and X-ray characterized. Elemental analysis, X-ray diffraction and infrared spectroscopy of the complex were performed. The crystal system is orthorhombic. Crystal data: Fw=498.98, spacegroup: P212121. Z=4, a=14.952(3), b=20.491(4), c=6.713 Å. V=2056.7(9) Å. λ(Mo-K)=0.71070 Å. μ=12.18 cm−1, Dcalc=1.66 g/cm3, F000=1032.00, R=0.062, Rw=0.087. X-ray analysis illustrated that 4,4′-bpy is mono-protonated and that there are two kinds of anions in one molecule, which give rise to the hydrogen interaction between the molecules in the crystal. Then an extended three-dimensional network is formed along the hydrogen bonds and π–π bonds between the pyridine rings.  相似文献   

4.
The photophysics of jet-cooled N-methylpyrrole molecules following excitation to their first excited singlet state (the 1A2 state, arising from a 3s/σ*←π electron promotion) has been investigated by resonance enhanced multiphoton ionisation spectroscopy, by measurements of wavelength resolved ‘action’ spectra for forming CH3 photoproducts, and by velocity map imaging studies of these CH3 products (in their v = 0 and v2 = 1 vibrational levels). CH3 products are observed at all excitation wavelengths within the NMP absorption band. Direct dissociation on the 1A2 potential energy surface (PES) yields ‘fast’ CH3 fragments, with an average total kinetic energy release (TKER) of 6500 cm−1, but this product channel is only observed in a narrow wavelength range near the absorption band origin. All of the measured CH3 images also show a broad component, peaking at lower TKER (1700 cm−1); this component extends beneath the ‘fast’ feature in images recorded at wavelengths near the origin, and accounts for all of the CH3 products observed at shorter photolysis wavelengths. These products are attributed to decay of highly vibrationally excited ground state molecules formed by radiationless transfer from the 1A2 state. Similarities and differences with the results of previous studies of the H + pyrrolyl products arising in the UV photodissociation of pyrrole are discussed in terms of the likely nuclear motions on the relevant ground and excited PESs (along RN–CH3/RN–H), and the possible couplings between these surfaces. The present study confirms that the proposed model of 1πσ* state induced bond fission in heteroaromatic molecules [A.L. Sobolewski, W. Domcke, Chem. Phys. 259 (2000) 181] is also applicable to non-hydride substituted heteroaromatics, but that mass effects can have an important influence on the subsequent nuclear dynamics.  相似文献   

5.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

6.
The interaction between Mo2(O2CCH3)4, Me3SiI and I2 in THF resulted in oxygen abstraction from the solvent and formation of [Mo2(μ-O)(μ-I)(μ-O2CCH3) I2(THF)4]+[MoOI4(THF)] and I---(CH2)4---I. The molybdenum complex has been characterized by X-ray diffractometry. Crystal data: triclinic, space group P , a = 13.827(3) Å; b = 15.803(7) Å; c = 9.950(3) Å; = 93.34(4)°; β = 102.40(2)°; γ = 90.09(2)°; V = 2120(2) Å3; Z = 2; dcalc = 2.559 g cm−3; R = 0.0476 (Rw = 0.0613) for 370 parameters and 3938 data with F02> 3σ(F02). The metal-metal distance in the cation is 2.527(2) Å and indicates a strong interaction. The magnetic behavior is consistent with the assignment of one unpaired electron to the Mo27+ core of the cation and one to the d1 Mo(V) center of the anion. The interaction between Mo(CO)6 and I2 in THF also results in the formation of 1,4-diiodobutane.  相似文献   

7.
Lamellar crystalline calcium phenylphosphonate, as anhydrous Ca(HO3PC6H5)2 and hydrated Ca(HO3PC6H5)2·2H2O compounds, were used as hosts for intercalation of polar n-alkylmonoamine molecules of the general formula CH3(CH2)nNH2 (n=0–4, 7) in water or 1,2-dichloroethane. An increase in the interlayer distance was observed. The exothermic enthalpic values for intercalation increased with the number of carbon atoms and with increasing concentration of the amines. The intercalation followed by a titration procedure in the solid/liquid interface with Ca(HO3PC6H5)2·2H2O and Ca(HO3PC6H5)2 gave the enthalpy/number of carbons correlations: ΔintH=−(1.74±0.43)–(1.30±0.13)nc and ΔintH=−(4.15±0.15)–(1.07±0.03)nc, for water and 1,2-dichloroethane, respectively. A similar correlation ΔintH=−(4.27±0.80)–(1.85±0.21)nc was obtained in water by using the ampoule breaking procedure for Ca(HO3PC6H5)2·2H2O. The increase in exothermic enthalpic values with the increase in n-aliphatic carbon atoms is more pronounced for the anhydrous compound and also when using the ampoule breaking procedure. The Gibbs free energies are negative. Positive entropic values favor intercalation in these systems.  相似文献   

8.
In connection with heliangine, extracted from leaves of Helianthus tuberosus L., the crystal structure of dihydroheliangine monochloroacetate, C22H29C7Cl, has been determined by X-ray methods. The tetragonal unit cell with dimensions, A = 13·77, C = 11·95 Å, contains four molecules, the space group being P41 - C42 or P43 - C44. Using a three-dimensional Patterson function and minimum functions, a majority of atomic positions were determined. Further elucidation of the structure was continued by alternative application of successive least squares treatment and Fourier syntheses. The structure thus determined is fully consistent with the chemical results obtained by Morimoto et al. The final R-value is 0·134 (using 1680 data with sin2 θ/λ2 < 0·20) or 0·152 (using 2419 data with sin2θ/λ2 < 0·27).  相似文献   

9.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

10.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

11.
Microwave spectra of allylsilane and its 13C and deuterium substituted species have been measured and assigned for the skew isomer. The rs structure was determined with the aid of several assumptions. Some of the parameters determined are; r(C=C) = 1.328 ± 0.007 Å, r(C---C) = 1.492 ± 0.008 Å, (CCC) = 126.7 ± 0.8°, (CCSi) = 111.6 ± 0.5° and τ(CCCSi) = 106.8 ± 1.1°. Dipole moments and their components were also determined for the CH2 = CHCH2SiH3 and CH2=CHCH2SiD3 species. Hyperconjugation between the C=C π bond and the C---Si σ bond is discussed.  相似文献   

12.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

13.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

14.
The title complex [NH_3CH_2CH(NH_2)CH_3]_2 [M(Ⅵ)O_2(OC_6H_4O)_2](M= Mo_(0.6)W_(0.4))was synthesized via a simple solution-phase chemical route.The determination of single crystal X-ray diffraction revealed that the title compound is crystallized in a monoclinic system with P2(1)/n space group,a=1.0913(10)nm,b=1.0442(10)nm,c=1.8842(19)nm,α=90°,β=96.530(17)°,γ=90°,Z=4,and V=2.133(4)nm3.The mononuclear anionic unit [M(Ⅵ)O2(OC6H4O)2]2-displays chiral pseudo-octahedral [MO_6] coordination geometry and is linked by chiral cations via hydrogen bond and π…π stacking interaction.The transmission electron microscopy images show that the title complex is comprised of nano-particles with diameters ranging from 20 to 50 nm.The NMR study shows the 1H downfield chemical shifts of [NH_3CHaHbCH(NH_2)CH_3] cations in the title complex when it is mixed with adenosine-triphosphate(ATP),and the chemical shift difference between Ha and Hb is increased greatly,and most of the catecholate ligands dissociate from the central metal atoms.The DNA cleavage activity experiment reveals that DNA cleavage promoted by the title complex is lower than that by Na_2MoO_4 which possesses antitumor pro-perty,but higher than that by Na_2WO_4.  相似文献   

15.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

16.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

17.
The kinetics of the chromic acid oxidation of diphenylmethane in aqueous acetic acid solution has been studied. The rate law is v = k[φCH2φ][CrO3]h0 a kinetic isotope effect, kH/kD = 6·4 at 30°, was noted, and electron releasing groups were found to moderately facilitate the reaction (+ = −1·17). These, and related data, suggest that the initial reaction is the abstraction of a hydrogen atom forming a benzhydryl radical. The latter may then be further oxidized to give the product, benzphenone. It is noted that the chromic acid oxidations which must involve hydrogen abstraction all show a kinetic dependence on the total chromium (VI) concentration, whereas those which are believed to proceed via an ester mechanism have a kinetic dependence on only the acid chromate ion. This difference is suggested as a possible method of distinguishing between these two mechanisms. The effect of the water content of the solvent on the rate of the reaction is discussed, and a tentative, relative, H scale for some of these solutions is suggested. This may permit one to determine the number of molecules of water which are involved in a reaction.  相似文献   

18.
The state-selected reaction of CH(X2Πν″ = 0, 1) with H2 has been studied, in which CH was generated by IRMPD of a precursor gas, CH3OH. The subsequent evolution of CH (ν″ = 0, 1) was monitored by the sensitive LIF technique. For the ground state and vibrationally excited state CH, the reaction with H2 is found to depend on the total pressure in the sample cell at room temperature, which suggests that the reaction proceeds through an intermediate adduct, CH3. The backward dissociation process is found to depend on the buffer pressure, which can be rationalized via a collision-induced backward dissociation. The decay rates of CH (ν″ = 0, 1) due to collisions with H2 and Ar at a buffer pressure of 10 Torr are kH2 (ν″ = 1) = (2.3±0.1) × 10−1 cm3 molecule−1 s−1 and kAr (ν″ = 1) = (4.4±0.1) × 10−13 cm3 molecule−1 s−1. Possible effects of the vibrational excitation on the reaction rate of CH (ν″ = 1) are discussed.  相似文献   

19.
The far-UV (193 nm) laser flash photolysis of nitrogen-saturated isooctane solutions of 1,1-dimethylsiletane allows the direct detection of 1,1-dimethylsilene as a transient species, which (at low laser intensities) decays with pseudo-first-order kinetics (τ 10 μs) and exhibits a UV absorption spectrum with λmax 255 nm. Characteristic rapid quenching is observed for the silene with methanol (kMcOH = (4.9 ± 0.2) × 109 M−1 s−1), tert-butanol (kBuOH = (1.8 ± 0.1) × 109 M−1 s−1) and oxygen (kO2 = (2.0 ± 0.5) × 108 M−1 s−1). The Arrhenius activation parameters for the reaction with methanol have been determined to be Ea = −2.6 ± 0.6 kcal mol−1 and log A = 7.7 ± 0.3.  相似文献   

20.
The generality of a two-electron reduction process involving an mechanism has been established for M3(CO)12 and M3(CO)12n(PPh3)n (M = Ru, Os) clusters in all solvents. Detailed coulometric and spectral studies in CH2Cl2 provide strong evidence for the formation of an ‘opened’ M3(CO)122− species the triangulo radical anions M3(CO)12−· having a half-life of < 10−6 s in CH2Cl2. However, the electrochemical response is sensitive to the presence of water and is concentration dependent. An electrochemical response for “opened” M3(CO)122− is only detected at low concentrations < 5 × 10−4 mol dm−3 and under drybox conditions. The electroactive species ground at higher concentrations and in the presence of water M3(CO)112− and M6(CO)182− were confirmed by a study of the electrochemistry of these anions in CH2Cl2; HM3(CO)11 is not a product. The couple [M6(CO)18]−/2− is chemically reversible under certain conditions but oxidation of HM3(CO)11 is chemically irreversible. Different electrochemical behaviour for Ru3(CO)12 is found when [PPN][X] (X = OAc, Cl) salts are supporting electrolytes. In these solutions formation of the ultimate electroactive species [μ-C(O)XRu3(CO)10] at the electrode is stopped under CO or at low temperatures but Ru3(CO)12−· is still trapped by reversible attack by X presumably as [η1-C(O)XRu3(CO)11]. It is shown that electrode-initiated electron catalysed substitution of M3(CO)12 only takes place on the electrochemical timescale when M = Ru, but it is slow, inefficient and non-selective, whereas BPK-initiated nucleophilic substitution of Ru3(CO)12 is only specific and fast in ether solvents particulary THF. Metal---metal bond cleavage is the most important influence on the rate and specificity of catalytic substitution by electron or [PPN]-initiation. The redox chemistry of M3(CO)12 clusters (M = Fe, Ru, Os) is a consequence of the relative rates of metal---metal bond dissociation, metal-metal bond strength and ligand dissociation and in many aspects resembles their photochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号