首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The idea of quality by design (QbD) has been proposed in pharmaceutical field. QbD is a systematic approach to control the product performance based on the scientific understanding of the product quality and its manufacturing process. In the present study, near-infrared (NIR) imaging is utilized as a tool to achieve this concept. A practical use of a chemometrics technique called self-modeling curve resolution (SMCR) is demonstrated with NIR imaging analysis of pharmaceutical tablets containing two ingredients, a soluble active ingredient, pentoxifylline (PTX), and an insoluble excipient, palmitic acid. Concentration profiles obtained by SMCR reveal that the homogenous distribution of chemical ingredients strongly depends on the grinding time and that its process plays a central role in quantitative control, say sustained-release of PTX. In addition, pure component spectra by SMCR indicate a sequential change of specific NIR peak intensities following the increase of the grinding time. The spectra change shows a molecular structure change related to its crystallinity during grinding process. Accordingly, this study clearly demonstrates that NIR imaging combined with SMCR can be a powerful tool to reveal chemical or physical mechanism induced by the manufacturing process of pharmaceutical products and that it may be a solid solution for QbD of pharmaceutical products.  相似文献   

2.
In the pharmaceutical industry, dextrose is used as an active ingredient in parenteral solutions and as an inactive ingredient (excipient) in tablets and capsules. In order to address the need for more sophisticated analytical techniques, we report our efforts to develop enhanced identification methods to screen pharmaceutical ingredients at risk for adulteration or substitution using field-deployable spectroscopic screening. In this paper, we report our results for a study designed to evaluate the performance of field-deployable Raman and near infrared (NIR) methods to identify dextrose samples. We report a comparison of the sensitivity of the spectroscopic screening methods against current compendial identification tests that rely largely on a colorimetric assay. Our findings indicate that NIR and Raman spectroscopy are both able to distinguish dextrose by hydration state and from other sugar substitutes with 100% accuracy for all methods tested including spectral correlation based library methods, principal component analysis and classification methods.  相似文献   

3.
Recently, Raman spectroscopy become a popular and potential analytical technique for the analysis of pharmaceuticals as a result of its advancement. The innovation of laser technology, Fourier Transform-Raman spectrometers with charge coupled device (CCD) detectors, ease of sample preparation and handling, mitigation of sub-sampling problems using different geometric laser irradiance patterns and invention of different optical components of Raman spectrometers are contributors of the advancement of Raman spectroscopy. Transmission Raman Spectroscopy is a useful tool in pharmaceutical analysis to address the problems related with sub-sampling in conventional Raman back scattering. More importantly, the development of surface-enhanced Raman scattering (SERS) has been a prominent advancement for Raman spectroscopy to be applied for pharmaceuticals analysis as it avoids the inherent insensitivity and fluorescence problems. As the active pharmaceutical ingredients (APIs) contain aromatic or conjugated domains with strong Raman scattering activity, Raman spectroscopy is an attractive alternative conventional analytical method for pharmaceuticals. Coupling of Raman spectroscopy with separation techniques is also another advancement applied to reduce or avoid possible spectral interferences. Therefore, in this review, transmission Raman spectroscopy, SERS, and SERS coupled with various separation techniques for pharmaceutical analysis are presented.  相似文献   

4.
Raman spectroscopy has become an attractive tool for the analysis of pharmaceutical solid dosage forms. In the present study it is used to ensure the identity of tablets. The two main applications of this method are release of final products in quality control and detection of counterfeits. Twenty-five product families of tablets have been included in the spectral library and a non-linear classification method, the Support Vector Machines (SVMs), has been employed. Two calibrations have been developed in cascade: the first one identifies the product family while the second one specifies the formulation. A product family comprises different formulations that have the same active pharmaceutical ingredient (API) but in a different amount. Once the tablets have been classified by the SVM model, API peaks detection and correlation are applied in order to have a specific method for the identification and allow in the future to discriminate counterfeits from genuine products. This calibration strategy enables the identification of 25 product families without error and in the absence of prior information about the sample. Raman spectroscopy coupled with chemometrics is therefore a fast and accurate tool for the identification of pharmaceutical tablets.  相似文献   

5.
Applications of Raman spectroscopy in pharmaceutical analysis   总被引:3,自引:0,他引:3  
As Raman spectroscopy enables rapid, non-destructive measurements, the technique appears a most promising tool for on-line process monitoring and analysis in the pharmaceutical industry. This article gives a short introduction to Raman spectroscopy and presents several applications in the pharmaceutical field.  相似文献   

6.
Identification of the crystal phase of an active pharmaceutical ingredient (API) in a pharmaceutical tablet is of outmost importance since different polymorphs exhibit different physicochemical properties. Furthermore, some of the crystal phases are protected by patents. Identification of Risperidone polymorph A in film coated commercial tablets was attempted using IR spectroscopy, Raman spectroscopy and X-ray powder diffraction (XRPD). The stability of this polymorph through time and during the manufacturing process was also examined. The inability of IR and Raman techniques to identify the presence of polymorph A in the tablets, despite their lower detection limits for Risperidone, left the XRPD as the only technique that could be used for identifying the presence of Risperidone A against the other crystal phases in the presence of the excipients. Polymorph A was proved to be stable during the manufacturing process and after a storage period of 2 years.  相似文献   

7.
Raman spectorscopy is—like infrared spectroscopy—a method for the study of vibrations of molecules and crystals. The two methods are complementary: if a vibration results in a change of the polarizability of a molecule, it is Raman active; if a change in the molecular dipole moment results, it is infrared active Vibrations of nonpolar groups and totally symmetrical vibrations of molecules are often only Raman active. IR and Raman spectra together give information about the symmetries and structures of molecules and crystals and about the properties of chemical bonds and intermolecular interactions. Until about 10 years ago Raman spectra could only be recorded on relatively large amounts of essentially colorless substances. After the advent of laser light sources the situation changed completely. The amount of sample substance required is now in the region of milli- and micrograms. Gases, liquids and solid samples, especially air-sensitive and reactive substances, single crystals, crystal needles and filaments as well as aqueous solutions can be readily investigated. The identification of molecules and the elucidation of molecular structures, biochemical analysis, and control of evnivornmental pollution are important aplications of Raman spectroscopy. Raman spectroscopy now constitutes an additional powerful tool in instrumental analysis  相似文献   

8.
Summary: Raman spectroscopy was applied to perform a comprehensive morphological analysis of polyethylene (PE) ski base materials at different processing levels. The morphological characterization included determination and evaluation of Raman spectra and examination of the crystallinity values by differential scanning calorimetry (DSC). A good agreement between Raman and DSC crystallinity fractions was obtained, thus corroborating the Raman spectroscopy approach. While for the PE grade with the lowest average molar mass no significant morphological changes due to processing from the raw material via the extruded film to the post-treated film was found, higher molar mass PE grades exhibited a decrease of crystallinity, but an increase of the amorphous fraction along the process chain.  相似文献   

9.
In recent years, transmission Raman spectroscopy (TRS) has emerged as a potent new tool for rapid, nondestructive quantitation in pharmaceutical manufacturing. In order to expand the applicability of TRS and enhance its use in product quality monitoring during drug production, we aimed, in the present study, to apply partial least-squares (PLS) approaches to build a model consisting of 150 handmade tablets and covering 15 levels through the use of a multifactor orthogonal design of experiment (DOE), which was used to predict concentrations of validation tablets made by hand. The difference between results according to HPLC and TRS were negligible. The model was used to predict the active pharmaceutical ingredient (API) content in four random commercial paracetamol tablets, and corrected with the spectra of the commercial tablets to obtain four corresponding models. The results show that the content relative error in the model’s predictions after correction with commercially available tablets was significantly lower than that before correction. The corrected model was used to make predictions for 20 tablets from the brand Panadol. Compared with the HPLC results, the prediction relative error was basically less than 4.00%, and the relative standard deviation (RSD) of the content was 0.86%.  相似文献   

10.
FT Raman spectroscopy and micro spectroscopy were used for the investigation of cellulose, cellulose derivatives and cellulosic plant fibres. Lattice structures of cellulose, polymorphic modifications I and II, as well as amorphous structure, were clearly identified by means of FT Raman vibrational spectra. Chemometric models were developed utilizing univariate calibration as well as methods of multivariate data analyses of FT Raman spectral data for the fast prediction of cellulose properties. Cellulose properties like the degree of crystallinity XcRaman, the degree of substitution DSCMC, DSAC and cellulose reactivity were determined. In situ/ in vivo FT Raman micro spectroscopy was used for the characterization of cellulose structures of flax and hemp fibres. Orientational and stress dependent FT Raman experiments were carried out.  相似文献   

11.
原位电化学拉曼光谱是一种重要的光谱电化学技术.基于超微电极的原位电化学拉曼光谱将拉曼光谱反映的结构信息与电极表面的电化学过程从实验上严格对应和关联,为深刻理解电化学反应机理提供依据.本文综述了采用超微电极作为工作电极的原位电化学拉曼光谱的研究方法和应用进展,总结了应用超微电极作为工作电极开展电化学拉曼光谱实验的方法和具有表面增强拉曼活性的超微电极制备方法,展示了如何利用在超微电极表面获得的拉曼光谱与界面电化学过程的严格关联研究单个锌颗粒电化学氧化过程、吡啶分子在Au电极表面的电化学吸附过程,以及如何利用该技术能以高的信噪比和灵敏度同时测量光电流与分子反应这一特性研究对巯基苯胺选择性光氧化反应.采用超微电极作为工作电极的原位电化学拉曼光谱技术极大拓展了拉曼光谱技术的研究范围,有望成为探索(光)电化学反应的有力工具.  相似文献   

12.
二维相关振动光谱技术   总被引:8,自引:0,他引:8  
从发展历史、计算方程、性质规则等方面系统地介绍了近年来发展起来的二维相关光谱技术.结合各种常见的一维振动光谱, 如红外、拉曼、荧光、近红外-红外等光谱举例阐述了二维振动光谱的优势及其普适性.介绍了在广义二维相关光谱理论上最新延伸发展起来的二维样品-样品相关技术和二维杂化相关技术的基本理论, 并将之与传统的二维变量-变量相关技术(广义二维相关光谱)进行了比较.  相似文献   

13.
In this paper, 2D fluorescence and 2D hetero-spectral fluorescence-Raman correlation spectroscopies were performed to better understand the dynamic process of liquid crystalline (LC) oligomer, the esterification product of ethyl 4-[4′-oxy-4-biphenyl-carbonyloxy]-4′-biphenylcarboxylate with poly(ethylene oxide)s (PEO) (DP = 12) (designated as 12-4). We found that 2D fluorescence correlation spectroscopy provided much more detailed information on the mechanism of dynamic development of LC oligomer with temperature variation than conventional 1D fluorescence spectroscopy. Furthermore, we investigated the structural change of 12-4 at the molecular level during the phase transitions by using 2D hetero-spectral fluorescence-Raman correlation spectroscopy.  相似文献   

14.
Triphenylamine was electrochemically polymerized in a mixture of toluene and acetonitrile with different electrolyte salts. The poly(triphenylamine) (PTPA) films are insoluble in polar solvents and show high stability and no degradation or loss in electrochemical properties when stored in a laboratory atmosphere. The PTPA films were characterized in situ by FTIR external reflection spectroscopy and by Raman spectroscopy. Electronic Publication  相似文献   

15.
Raman spectroscopy provides information on bone chemical composition and structure via widely used metrics including mineral to matrix ratio, mineral crystallinity and carbonate content, collagen crosslinking ratio and depolarization ratios. These metrics are correlated with bone material properties, such as hardness, plasticity and Young''s modulus. We review application of Raman spectroscopy to two important irradiated animalmodels: the mouse tibia, amodel for damage to cortical bone sites including the rib (breast cancer) and to healthy tissue adjacent to extremity sarcomas, and the rat mandible, a model for radiation damage in head and neck cancer radiotherapy. Longitudinal studies of irradiated mouse tibia demonstrate that radiation-induced matrix abnormalities can persist even 26 weeks postradiation. Polarized Raman spectroscopy shows formation of more ordered orientation of both mineral and collagen. At 8 weeks post-radiation, irradiated rat hemimandible exhibits transient hypermineralization, increased collagen cross-linking and decreased depolarization ratios of mineral and collagen. A standard radioprotectant, amifostine, mitigates rat mandible radiation damage, with none remaining detectable 18 weeks post-radiation. Already a powerful tool to monitor radiation damage, Raman spectroscopy may be important in development of new radiotherapy protocols and radioprotective agents. Further in vivo studies of radiation effects on the rodent models are underway, as are development of methodologies for eventual use in human subjects.  相似文献   

16.
Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.  相似文献   

17.
A novel and reliable Raman collection system for the non-destructive analysis of pharmaceutical tablets has been proposed. The main idea was to develop and utilize the wide area illumination (WAI) scheme for Raman collection to cover a large surface area (coverage area: 28.3 mm2) of solid tablet to dramatically improve the reliability in sample representation and the reproducibility of sampling due to less sensitivity of sample placement with regard to the focal plane. Simultaneously, the effective and synchronous standard configuration using isobutyric anhydride was harmonized with the WAI scheme to correct the problematic variation of Raman intensity from the change of laser power. To verify the quantitative performance of the proposed scheme, the compositional analysis of active ingredient in naproxen tablet has been performed. The average sample composition was successfully represented by using the WAI scheme compared to the conventional scheme with a much smaller illumination area. After the intensity correction using the non-overlapping peak of isobutyric anhydride standard and area normalization, a partial least squares (PLS) model was developed using an optimized spectral range and the concentrations of naproxen in tablets were accurately predicted. The prediction accuracy was not sensitive to changes in laser power or tablet position within ±2 mm. Additionally, the prediction accuracy was repeatable without systematic drift or need for re-calibration.  相似文献   

18.
The assessment of active pharmaceutical ingredient (API) particle size and morphology is of great importance for the pharmaceutical industry since it is expected to significantly affect physicochemical properties. However, very few methods are published for the determination of API morphology and particle size of film-coated (FC) tablets. In the current study we provide a methodology for the measurement of API particle size and morphology which could be applied in several final products. Bismuth Oxide 120 mg FC Tabs were used for our method development, which contain bismuth oxide (as tripotassium dicitratobismuthate (bismuth subcitrate)) as the active substance. The sample preparation consists of partial excipient dissolution in different solvents. Following this procedure, the API particles were successfully extracted from the granules. Particle size and morphology identification in Bismuth Oxide 120 mg FC Tabs was conducted using micro-Raman mapping spectroscopy and ImageJ software. The proposed methodology was repeated for the raw API material and against a reference listed drug (RLD) for comparative purposes. The API particle size was found to have decreased compared to the raw API, while the API morphology was also affected from the formulation manufacturing process. Comparison with the RLD product also revealed differences, mainly in the API particle size and secondarily in the crystal morphology.  相似文献   

19.
In this paper, nine beads from excavations in the Valongo Wharf, located in the harbor area of Rio de Janeiro, Brazil that were utilized as ornaments by Africans and Afrodescendants during the 19th century were analyzed by Raman and X-Ray Fluorescence (XRF) spectroscopy. All samples in the analysis showed Raman spectra with two bands of maximum intensity around 1000 and 500 cm−1 related to the maximum stretching (νmax) and bending mode (δ), respectively, of the tetrahedral network of the SiO4 present in the glass matrix. However, there is variation in the intensity and position of the bands that are directly associated with the burning process and the raw material utilized in the manufacture of the beads. Based on the polymerization index (Ip = A500/A1000), it is possible to relate these two parameters. By establishing a correlation among the Ip and the νmax band, the beads were classified into groups. The results reveal that the beads’ base paste exhibits differences, allowing their classification into groups according to the manufacturing process. Based on the combination of the elemental characterization and Raman spectroscopy results, it was also possible to conclude that European and Asian countries are the possible origins of the beads.  相似文献   

20.
We employ Raman spectroscopy to characterize several microstructural aspects of a family of ethylene-propylene copolymers (EPC). Focus is made on the simultaneous analysis of crystallinity and chemical composition. A curve fitting procedure is used to isolate Raman bands ascribed to polypropylene chains in the crystal lattice from contributions of the amorphous phase. Crystal contents of EPC calculated on this basis are in the range 10–34 wt%, in good agreement with independent wide angle x-ray diffraction and differential scanning calorimetry measurements. Besides, Raman spectroscopy captures in some of the samples a mixed crystalline structure with both, polyethylene and polypropylene crystals, indicating a distinctive molecular architecture. The chemical composition of EPC is obtained from Raman spectra in the melt state to decouple peaks characteristics of the crystal lattice from fundamental vibrational modes of the polymer chain. EPC present ethylene contents in the range 5–26 mol%, in good agreement with parallel results from 13C nuclear magnetic resonance analysis. Remarkably, a rather complete characterization of EPC can be achieved on the base of a single experimental technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号