首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
 采用射频反应溅射法在不同衬底上制备Zn3N2薄膜,然后对其原位氧化制备ZnO薄膜。利用X射线衍射分析(XRD)、扫描电子显微镜(SEM)和光致发光谱(PL)等表征技术研究了不同衬底对ZnO薄膜的结晶特性和发光性能的影响。XRD研究结果显示:Zn3N2薄膜在500 ℃原位氧化3 h后完全转变为ZnO薄膜,在玻璃和熔融石英衬底上制备的多晶ZnO薄膜无择优取向,而单晶硅(100)衬底上的多晶ZnO薄膜具有较好的沿(002)方向的择优取向。PL测试结果显示:硅和熔融石英衬底上的多晶ZnO薄膜发光性能良好,激子复合产生的紫外发光峰很强,且半高宽较窄,而来自于深能级发射的绿色发光峰很弱;而玻璃衬底上的多晶ZnO薄膜发光性能较差。  相似文献   

2.
采用射频磁控溅射法在玻璃衬底上制备出锑掺杂的氧化锡(SnO22:Sb)薄膜.制 备薄膜是具有纯氧化锡四方金红石结构的多晶膜薄,晶粒生长的择优取向为[110].室温下光致发光测量结果表明,在392nm附近存在强的紫外-紫光发射.研究了不同氧分压对薄膜结构及发光性质的影响,并对SnO22:Sb的光致发光机制进行了探索性研究.  相似文献   

3.
用射频磁控溅射法在蓝宝石(0001)衬底上制备出锑掺杂的氧化锡(SnO2:Sb)薄膜.对制备薄膜的结构和发光性质进行了研究.制备样品为多晶薄膜,具有纯SnO2的四方金红石结构.室温条件下对样品进行光致发光测量,在334 nm附近观测到紫外发射峰,并对SnO2:Sb的光致发光机制进行了研究.  相似文献   

4.
利用电子回旋共振-等离子体增强金属有机物化学气相沉积 (ECR-PEMOCVD)方法,采用二茂锰(Cp2Mn)作为Mn源,高纯氮气作为氮源,三乙基镓(TEGa)作为Ga源,在蓝宝石(α-Al2O3)(0001)衬底上外延生长GaMnN稀磁半导体薄膜.反射高能电子衍射(RHEED)、X射线衍射(XRD)、原子力显微镜(AFM)表征了GaMnN薄膜的晶体结构和表面形貌.GaMnN薄膜均表现出良好的(0002)择优取向,表明制备的薄膜倾向于  相似文献   

5.
YBa2Cu3O7-δ/LaAlO3 (YBCO/LAO) 超导薄膜是通过热蒸发沉积方法制备的,实验中使用的Tl2Ba2CaCu2O8/LaAlO3 (TBCCO/LAO) 超导薄膜是通过直流磁控溅射方法制备的.通过分析两片超导薄膜的XRD谱计算出了两片超导薄膜内的应变,ΔC相似文献   

6.
苏少坚  成步文  薛春来  张东亮  张广泽  王启明 《物理学报》2012,61(17):176104-176104
在Si (001)衬底上, 以高质量的弛豫Ge薄膜作为缓冲层, 先后生长Sn组分x分别为2.5%, 5.2%和7.8%的完全应变的三层Ge1-xSnx合金薄膜. 在Si (001)衬底上直接生长了x分别为0.005, 0.016, 0.044, 0.070和0.155的五个弛豫Ge1-xSnx样品. 通过卢瑟福背散射谱、高分辨X射线衍射和X射线倒易空间图等方法测量了Ge1-xSnx合金的组分 与晶格常数. 实验得到的晶格常数相对Vegard定律具有较大的正偏离, 弯曲系数b=0.211 Å.  相似文献   

7.
采用脉冲激光气相沉积(PLD)方法,在Si(100)晶面上制备了Co:BaTiO3纳米复合薄膜.采用X射线衍射(XRD)结合透射电镜(TEM)方法研究了两种厚度Co:BaTiO3纳米复合薄膜的晶体结构,当薄膜厚度约为30 nm时,薄膜为单一择优取向;当薄膜厚度约为100nm时,薄膜呈多晶结构.原子力显微镜(AFM)分析表明,当膜厚为30nm时,薄膜呈现明显的方形晶粒.采用紫外光电子能谱(UPS)研究了Co的价态和Co:BaTiO3纳米复合薄  相似文献   

8.
李跃甫  叶辉  傅兴海 《中国物理 B》2008,17(2):1229-1235
采用溶胶-凝胶法在(100)Si单晶上预先制备出掺钾(K)的铌酸锶钡(SBN)缓冲层,利用射频磁控溅射法在缓冲层KSBN上沉积出高择优取向的铌酸锶钡薄膜,获得了磁控溅射法制备择优取向铌酸锶钡薄膜的相关工艺参数,研究发现,KSBN缓冲层能够很有效地克服衬底与SBN薄膜之间较大的晶格失配,在氧气氩气的比例为1∶2,工作气压为10 Pa,溅射功率300 W,衬底温度300℃,退火温度为800℃的工艺条件下,能够获得c轴高度择优取向的铌酸锶钡铁电薄膜.利用X射线衍射仪,原子力显微镜等仪器分析了薄膜  相似文献   

9.
康朝阳  唐军  李利民  闫文盛  徐彭寿  韦世强 《物理学报》2012,61(3):37302-037302
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差.  相似文献   

10.
马姣民  梁艳  郜小勇  陈超  赵孟珂  卢景霄 《物理学报》2012,61(5):56106-056106
Ag2O薄膜在新型超高存储密度光盘和磁光盘方面具有潜在的应用前景.利用射频磁控反应溅射技术, 通过调节衬底温度在沉积气压为0.2 Pa、氧氩比为2:3的条件下制备了一系列Ag2O 薄膜.利用通用振子模型(包括1个Tauc-Lorentz振子和2个Lorentz 振子)拟合了薄膜的椭圆偏振光谱.在1.5-3.5 eV能量区间,薄膜的折射率在2.2-2.7之间, 消光系数在0.3-0.9之间. 在3.5-4.5 eV能量区间,薄膜呈现了明显的反常色散,揭示Ag2O薄膜的等离子体振荡频率在 3.5-4.5 eV之间. 随着衬底温度的升高,薄膜的光学吸收边总体上发生了红移, 该红移归结于薄膜晶格微观应变随衬底温度的升高而增大. Ag2O薄膜的光学常数表现出典型的介质材料特性.  相似文献   

11.
Luminescent Gd2O2S:Tb3+ phosphor thin films were grown on Si (100) substrates, using the pulsed laser deposition technique. The films were grown in 100 to 300 mTorr oxygen gas (O2) atmospheres when the substrate temperature was kept constant at 400 or 600°C. The effect of the O2 ambient on the structure and morphological properties of the films were analyzed using x-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. Spherical nanoparticles deposited on the Si (100) substrates were shown to crystallize in the hexagonal structure of Gd2O2S. The photoluminescence (PL) spectra of all the films were characterized by a stable green emission peak with a maximum at 545 nm. Improved PL intensity was observed from the films deposited at higher oxygen pressures and higher substrate temperatures. Particles sizes of the nanoparticles deposited under the different conditions varied between 19 and 36 nm for the different samples. Smaller and more densely packet particles were produces at the higher O2 pressures and the higher temperature.  相似文献   

12.
The annealing effects of sapphire substrates on the quality of epitaxial ZnO films grown by dc reactive magnetron sputtering were studied. The atomic steps formed on (0001) sapphire (α-Al2O3) substrates surface by annealing at high temperature were analyzed by atomic force microscopy. Their influence on the growth of ZnO films was examined by X-ray diffraction and photoluminescence measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates for ZnO grown by magnetron sputtering is 1400 °C for 1 h in air. PACS 81.40.Ef; 68.55.Jk; 81.05.Dz; 81.15.Cd  相似文献   

13.
Novel ternary Mn-containing compound MnGeP2 has been grown on GaAs and InP substrates using molecular beam epitaxy, in which Mn and Ge were supplied from solid sources and P from a gas source. The films obtained showed XRD pattern characteristic of MnGeP2. Lattice constants were determined using reciprocal lattice mapping analysis. Films directly grown on GaAs substrate showed three-dimensional grain-growth. By introduction of a Ge buffer layer growth mode became two-dimensional. The magnetization vs. temperature curve showed ferromagnetic properties at room temperature, in conflict with theory which predicts its antiferromagnetism. Presence of secondary phase is discussed.  相似文献   

14.
Co-doped ZnO epilayer films were grown by pulsed laser deposition (PLD) on vicinal cut silicon and sapphire substrates. Changes in deposition time were observed as a moderate effect on the quality of the films, and the influence of the thickness on thermoelectric signals from Zn0.9Co0.1O thin films were discussed. The effect of one of the main deposition parameters, the deposition time, on the crystallinity and electron mobility properties of the Zn0.9Co0.1O thin films grown on sapphire was investigated by means of X-ray diffraction (XRD) and laser-induced voltage (LIV) effect. It shown that the XRD rocking curve full-width half-maximun (FWHM) decreased as time increasing, and the LIV signals were observed along the tilting angle of the substrate orientation when the pulsed KrF excimer laser of 248 nm were irradiated on the films. When the films illuminated in pulse lasers, the highest signals occurred in the films with best crystalline quality, and the signals were higher in the films grown on sapphire than those on silicon substrates. It suggested that the electrical resistivity and electron mobility have close relations with not only the crystallinity but also with the interface of the thin films.  相似文献   

15.
Perovskites thin films with the composition La0.6Ca0.4MnO3 doped with 20% Fe, were prepared by pulsed reactive crossed beam laser ablation, where a synchronized reaction gas pulse interacts with the ablation plume. The films were grown on various substrates and the highest colossal magnetoresistance ratio (CMR) was detected by Hall measurements for films grown on LaAlO3 (1 0 0), which was selected as substrate for further investigations.Several growth parameters, such as substrate temperature and target to substrate distance were varied to analyze their influence on the film properties.The structure of the deposited thin films was characterized by X-ray diffraction and atomic force microscope, while Rutherford backscattering (RBS) was used to determine the film stoichiometry. The electrical properties were determined by Hall effect measurements in a magnetic field of 0.51 T.These measurements reveal that the amplitude of the CMR ratio depends strongly on the substrate and that the oxygen content influences the temperature where the transition from semiconductor to metal is observed.  相似文献   

16.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

17.
Nitrogen-substituted cubic perovskite-type SrTiO3 thin films were deposited in a one-step process using pulsed reactive crossed beam laser ablation (PRCLA) and RF-plasma assisted pulsed laser deposition (RF-PLD). Both techniques yield preferentially oriented films on SrTiO3(0 0 1), LaAlO3(0 0 1) and MgO(0 0 1) substrates with the unit cell parameters within 0.390(5) < a < 0.394(9) nm. The nitrogen content is higher in films deposited by PRCLA (0.84-2.40 at.%) as compared to films deposited by RF-PLD with nitrogen plasma (0.10-0.66 at.%). PRCLA with an ammonia gas pulse leads to a higher nitrogen content compared to the films grown with a nitrogen gas pulse, while films deposited by RF-PLD with ammonia plasma reveal only minor nitrogen contents (<0.10 at.%). The amount of the incorporated nitrogen can be tuned by adjusting the deposition parameters. Films deposited by PRCLA have a lower roughness of 1-3 nm compared to 12-18 nm for the films grown by RF-PLD. PRCLA yields partially reduced films, which exhibit electronic conductivity, while films deposited by RF-PLD are insulating. There is also a pronounced influence of the substrate material on the resistivity of the films deposited by PRCLA: films grown on SrTiO3 substrates exhibit a metallic-like behaviour, while the corresponding films grown on MgO and LaAlO3 substrates reveal a metal-to-semiconductor/insulator transition. Nitrogen incorporation into the SrTiO3 films results in an increased optical absorption at 370-500 nm which is associated with N(2p) localized states with the energy about 0.7 eV higher than the valence band energy in strontium titanate. The optical band gap energies in the studied N-substituted SrTiO3 films are 3.35-3.40 eV.  相似文献   

18.
Aluminium nitride (AlN) thin films have been grown on Si(100), Si(111) and Sapphire Al2O3(001) substrates by pulsed KrF excimer laser (wavelength 248 nm, duration 30 ns) ablation of an AlN target with the assistance of nitrogen-ion-beam bombardment. The influence of process parameters such as substrate temperature and ion-beam energy has been investigated in order to obtain high-quality AlN films. The AlN films deposited by pulsed-laser deposition (PLD) have been characterized by X-ray diffraction (XRD) to determine the crystalline quality, grain size and growth orientation with respect to the substrate. The XRD spectra of AlN films on Si(100), Si(111) and Sapphire substrates yield full-width-half-maximum (FWHM) values of approximately 1.6. The bonding characteristics in the films have been evaluated by Raman spectroscopy. The chemical composition of the films has been characterized by X-ray photoelectron spectroscopy (XPS). The surface morphology of the films has been measured by atomic force microscopy (AFM). At a substrate temperature of at least 600 °C, polycrystalline AlN films with orientations of AlN(100) and AlN(101) have been synthesized. PACS 68.55.-a; 81.15.Fg; 77.84.Bw  相似文献   

19.
The growth, crystal structure, and electrophysical properties of YBa2Cu3Ox (YBCO) epitaxial films grown with and without a CeO2 epitaxial sublayer on NdGaO3 (NGO) substrates with the normal to the surface deviating from the [110] axis by 5° to 26.6° around the [001] axis are investigated. It is shown that the orientation of YBCO epitaxial films grown on such substrates is determined by the existence of symmetry-equivalent directions in the substrate and in the CeO2 layer, as well as by the rate of film deposition. For a high deposition rate, YBCO films grow on the CeO2 sublayer in the [001] orientation irrespective of the orientation of the substrate and the sublayer. It was found that when the angle of deviation of the substrate plane is from the (110) NGO plane, twinning of one or both twinning complexes in YBCO may be suppressed.  相似文献   

20.
Bismuth telluride thin films have been grown by close space vapor transport (CSVT) technique as a function of substrate temperature (Tsub). Both N- and P-type samples can be obtained by this method which is a relatively simple procedure, which makes the method interesting for technological applications. The samples were deposited onto amorphous glass and polycrystalline CdTe film substrates in the substrate temperature range 300-425 °C, with a fixed gradient between source and substrate of 300 °C. The influence of the type of substrate and substrate temperature in the CSVT chamber on the physical properties of the films is presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号