首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Mendeleev Communications》2022,32(3):402-404
The effect of the nature of the metal (Fe and Co) deposited on the surface of hydrolysis lignin, as well as the metal content (1, 3, 5 and 7 wt%), on the process of dry catalytic lignin reforming has been studied. The use of the catalyst led to a twofold increase in the conversion of carbon dioxide at temperatures of 500–800 °C, while both metals showed similar activity. The maximum specific catalytic effect is achieved when supporting 7 wt% of active metals.  相似文献   

2.
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (q max) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.  相似文献   

3.
The thermal behavior of perfluorosulfonated membranes of three equivalent mass (EW=910, 1000 and 1100 g eq−1) has been studied for membranes in acid form and in the alkali metal countercations substituted samples. The water contents of the membranes decrease progressively with increasing EW and the countercations charge density. The monovalent cations substitutions increase the membranes thermal stability. DSC curves show a single endothermic peak around 120°C that give low peak temperature for low EW and high peak temperature for large cations size. The membrane mechanical properties changed for different EW and temperatures of membranes. Stress-strain analysis showed that K+ substituted membranes at both temperatures present a highest YM compared to the other alkali cation substitutions. The thermal properties of perfluorosulfonated membranes depend on the water contents, cation size, temperature and also on EW value.  相似文献   

4.
Neutron activation analysis was used to investigate and quantify the level of heavy metal uptake in the marine environment of Lake Austin in Austin, TX. Specifically, the samples studied were largemouth bass, or micropterus salmoides. The presence of heavy metals in the food chain presents multiple hazards, mostly as a food hazard for those species that ingest the fish, namely humans. To measure the concentrations of heavy metals in various fish samples, the nuclear analytical technique of neutron activation analysis (NAA) was used. Both epithermal and thermal irradiations were conducted for the NAA to look for short and long-lived radioisotopes, respectively. The samples themselves consisted of liver and tissue samples for each of the fish caught. Each sample was freeze-dried and homogenized before irradiation and spectrum acquisition. The results showed that all levels of heavy metals were not sufficient enough to make the fish unsafe for eating, with the highest levels being found for iron and zinc. Gold was found to be at much higher concentrations in the younger fish and virtually non-existent in the larger of the samples.  相似文献   

5.
Fluorine and its derivatives have been used as a substitute to oxygen-containing oxidizers in higher performing propellants and other energetic materials. They typically react rapidly with metals or thin oxide layers of the metals to produce metal fluorides, generally in the gaseous state.Thermal reactions of stoichiometric mixtures of metal (M=Al, Ti) -F containing polymers have been studied using thermal analyzers and their energetics are compared with the metals in other halogen element containing oxidizers. The experimental results indicated that thermal reaction becomes more exothermic as the bond strength between Al-X (X=F, Br, I) becomes stronger. It was also found that oxidation of metal powders is largely affected by the size of metal powders as well as the nature of existing oxide layer.  相似文献   

6.
Sorbent materials based on three thiacrown ethers, 1,4,7,10-tetrathiacyclododecane (12S4), 1,4,7,10,13-pentathiacyclopentadecane (15S5) and 1,4,7,10.13,16-hexathiacyclooctadecane (18S6) were prepared either by immobilizing the ligands into sol-gel (SG) matrix or coating on commercial solid phase extraction (SPE) column. SG sorbents were characterized by FT-IR, energy dispersive X-ray microanalysis (EDX) and thermogravimetric analysis/derivative thermogravimetric analysis (TGA/DTG). A marked thermal stability of the ligands when immobilized in sol-gel matrix was noted. The competitive sorption characteristics of a mixture of eleven metal ions (Mg2+, Zn2+, Cd2+, Co2+, Mn2+, Ca2+, Cu2+, Ni2+, Ag+, V4+, Hg2+) using: (i) batch method with ligands trapped in SG matrices, and (ii) off-line SPE column containing coated ligands were studied using ICP-MS. The extraction of metals were optimized for key parameters such as pH, contact time/flow rate, particle size (for SG sorbents) and ligand concentration. Under the optimized conditions, all the immobilized thiacrown ethers exhibited highest selectivity toward Ag+, with lesser responses to Hg2+ while the extraction of other metal ions were negligible. Among the SG sorbents, 18S6-SG offer the highest capacity and the best selectivity over Hg2+. However, for practical applications such as for selective isolation and preconcentration of Ag+, the SPE type especially based on 18S6 is preferred as analysis time and recoveries are favorable. The sorbents can be repeatedly used three times as there was no significant deterioration in the metal uptake (%E > 90%) or interference from other metal ions. The optimized procedures were successfully applied for the separation and preconcentration of traces Ag+ in different water samples.  相似文献   

7.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. Presence of heavy metals in the aquatic system is posing serious problems. Zinc has been used in many industries and removal of Zn ions from waste water is significant. Biosorption is one of the economic methods used for removal of heavy metals. In the present study, the biomass obtained from the dried Chlorella pyrenoidosa was used for evaluating the biosorption characteristics of Zn ions in aqueous solutions. Batch adsorption experiments were performed with this material and it was found that the amount of metal ions adsorbed increased with the increase in the initial metal ion concentration. In this study effect of agitation time, initial metal ion concentration, temperature, pH and biomass dosage were studied. Maximum metal uptake (q max) observed at pH 5 was 101.11 mg/g. The biosorption followed both Langmuir and Freundlich isotherm model. The adsorption equilibrium was reached in about 1 h. The kinetic of biosorption followed the second-border rate. The biomass could be regenerated using 0.1 M HNO3. A positive value of ΔH° indicated the endothermic nature of the process. A negative value of the free energy (ΔG°) indicated the spontaneous nature of the adsorption process. A positive value of ΔS° showed increased randomness at solid-liquid interface during the adsorption of heavy metals, it also suggests some structural changes in the adsorbate and the adsorbent. FTIR Spectrums of Chlorella pyrenoidosa revealed the presence of hydroxyl, amino, carboxylic and carbonyl groups. The scanning electron micrograph clearly revealed the surface texture and morphology of the biosorbent.  相似文献   

8.
It is shown that ion-exchange sorbents based on phenol-formaldehyde resins can be used for a long time for isolating and separating rare alkali metals without any significant changes in the ion-exchange selectivity and capacity. When the phenol sorbents were used in alkaline solutions at elevated temperatures, carboxyl groups gradually accumulated in them as a result of the oxidation of methylol groups with oxygen dissolved in the solution. This led to a considerable increase in the ion-exchange capacity of the sorbents and a simultaneous decrease in the selectivity with respect to Cs+-Rb+ and Rb+-K+ ions (it is desirable to avoid the drying of phenol ionites in air by storing them in a swelled state in closed vessels).  相似文献   

9.
The performance of two iminodiacetate chelating resins, applied in an element fractionation scheme, was investigated for the characterization of marine and stream water samples collected in potentially contaminated harbor and industrial zones. The comparison involved an evaluation of the sorption/desorption behavior of Cd, Cu, Pb and Zn on Chelex-100, a sorbent extensively employed for metal speciation studies, and on Lewatit TP-207, a material with similar chelating characteristics for which no applications for fractionation studies are reported. A characterization of the latter resin in terms of the influence of sample pH on the uptake of metals from aqueous solutions and their subsequent acid elution was carried out. Fractionation studies were performed on natural water samples and model solutions resembling their composition, spiked with micromolar concentrations of the metals. The operationally defined fractionation scheme is based on dynamic adsorption of the resin-labile fractions of metals on microcolumns made of the sorbents. This stage is followed by a batch procedure in which the eluent from the column is contacted with fresh resin to discriminate between the relatively stable species unable to react with the resin during the column interaction time, and the strongly complexed metals that do not interact with the sorbent even for periods of several hours. Results were obtained from coarsely filtered sub-samples and from specimens passed through membrane filters of pore size 0.45 and 0.22 µm. The method was also assessed with model solutions of the metals containing variable concentrations (in the 10-3–10-7 molar range) of complex forming agents such as nitrilotriacetic acid and trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid. An additional batch method, in which a fixed amount of resin was contacted with sample solution for increasing periods of time and the amount of metal remaining in solution measured as a function of the elapsed time, was used to obtain information on the kinetics of dissociation of species formed in the presence of added complexants. The behavior of both resins was similar, demonstrating that the discrimination of species derived from experiments with Chelex-100 may be properly validated by independent fractionation tests carried out with Lewatit TP-207. The behavior of the sorbents is also discussed in terms of the possible influence of particulate or colloidal materials and of kinetic effects related to the presence of complexing agents.  相似文献   

10.
Differential scanning calorimetry has been used to study the thermal effects during adsorption and desorption of water on different zeolite NaA samples. An attempt has been made to compare the thermal behaviour of a layer of zeoliete attached on metal ("by chemical bond") with zeolite powder pressed on metal. The dependence of the water uptake on temperature has been studied with a powdered sample. Isothermal measurements of the water uptake of the zeolite after activation, appeared the best way to determine the heat of adsorption. Calibration of the DSC was needed. The adsorbed amounts of water corresponding to the released heats were determined thermogravimetrically. Once the heat of adsorption is known, it is possible to determine the mass of active zeolite of thin synthesized zeolite layers on metal with DSC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
New hydrogels based on N-acryloyl-N′-ethylpiperazine (AcrNEP) and N,N-methylene bisacrylamide (MBA) were prepared by thermal initiated solution polymerization. The hydrogels swelled extensively in buffer solutions of low pH due to protonation of the amine functions of the monomers, while the swelling was less significant in buffer solutions of high pH. The increased swelling of the gel in low pH is due to the development and interaction of fixed charges within the gel network. As a result of the electrostatic repulsion between the charges the elastic constraint of the gel is modified which leads to pronounced swelling and hence to high water uptake. Water transport in the hydrogel both in buffer solutions of pH 2.6 and pH 8.4 was non-Fickian due to polymer relaxation (anomalous process). The gels demonstrated good uptake of divalent metal ions such as Ni2+, Co2+, and Zn2+, with high selectivity for Ni2+ ions due to the formation of a more stable ligand-metal complex. The metal uptake capacity increased with increase in pH of the solution, while an increase in the crosslinker amount of the hydrogel reduced its metal uptake capacity. In the presence of metal ions the swelling of the hydrogel reduced considerably due to the formation of additional physical crosslinks within the hydrogel network. The metal ion loaded hydrogels could be stripped and regenerated with 1 M sulfuric acid without any loss in swelling or metal uptake capacities.  相似文献   

12.
Oxidation of polyethylene (PE) melts in contact with metals (Cu, Pb, Au, Al, Zn, Ag) has been studied by infrared spectroscopy and differential thermal analysis (DTA). These metals may be divided into two groups, depending on their activity for oxidizing PE: namely, high-activity metals (Cu, Pb, Ag, Zn) and low-activity metals (Al, Au). During the oxidation of PE in contact with high-activity metals dissolution of the surface layer of metal is observed with accumulation of metal-containing compounds (salts of carboxylic acids) in the bulk of the polymer. With low-activity metals these phenomena are not observed. The rate of oxidation of PE on low-activity metals approaches the oxidation rate of nonmetals (polytetrafluoroethylene and inorganic glass). With certain high-activity metals (Cu, Pb) the process of oxidation is accelerated only in the early stage of oxidation; then the oxidation rate slows down and the oxidation process ceases. PE films separated from metal after being oxidized on it possess chemical memory, i.e., their oxidation rate depends on the nature of the metal with which they had been in contact, and on the duration of the contact oxidation. The effect of salts of carboxylic acids (metal stearates) on the oxidation of PE melts was also studied. Based on the data obtained, it is concluded that the rate of oxidation of PE melts on high-activity metals is controlled by metal-containing compounds which are the products of contact reactions.  相似文献   

13.
Sundd S  Prasad BB 《Talanta》1995,42(10):1395-1409
The ability of chelation chromatography in combination with differential pulse anodic stripping voltammetry (DPASV) to provide a simple, fast and reliable way of dealing with interionic interferences, competitive complexations, re-adsorption of released metal ions and sorption of spiking metal ions by organic/inorganic materials in the complex matrixes of real natural samples has been critically examined. The technique is based on the selective complexation of target metal fractions on some novel sorbents which are polymeric chelating resins doped on stationary supports (Whatman No. 1 paper and silica gel). The usual complications of leaching of the resin and/or the chelating ligand and colloid retention on the sorption bed at any stage of separation were largely obviated with these sorbents under the operational conditions of metal sorption. A detailed study on the application of such sorbents to the differentiation of ionic (free), labile (ionic plus weakly complexed) and bound (strongly complexed) metal fractions present in local river-sediment and water samples was carried out. Chelating resin-impregnated paper (CRIP) and chelating resin-immobilized silica gel column (CRISC) methods of chromatographic separation of analyte trace metals in combination with the follow-up 'standard addition' procedure of the DPASV technique were employed. A modest attempt has been made to formulate a speciation (fractionation) scheme for metal contents present in river-sediments and waters on the basis of selective retention of ionic and labile fractions on complexing resins.  相似文献   

14.
Biosorption of three divalent metals, viz., lead, copper, and cadmium in ternary aqueous mixtures was studied using Phanerochaete chrysosporium in batch shake flasks. The mixtures were prepared containing the metals at their either varying optimum or equal initial concentration combinations in aqueous solution of pH optimum to each of the metals. Following were the optimum initial concentration ranges of the metals in mixture: lead, 60–100 mg/L; copper, 20–60 mg/L; and cadmium, 5–15 mg/L. And, for varying these optimum concentration levels of the metals, a 23 full factorial design of experiments was employed. The results revealed that an increase in lead and cadmium concentrations helped in their better biosorption by the fungus, but an increase in initial copper concentration slightly diminished its removal. Statistical analysis of the results in the form of analysis of variance and Student t test gave a clear interpretation on the roles of both the individual metals and their interactions in the uptake of metals from mixture. Compared to the uptake of metals when presented individually, lead biosorption in mixture was found to be enhanced to a degree as high as 99%; on the other hand, copper and cadmium removals from mixtures were inhibited to the extent of 100% and 98%, respectively. However, this extent of inhibition or enhancement in the metal removals compared to the individual removals was less in mixtures containing all equal concentrations of the metals.  相似文献   

15.
The thermal decomposition of potassium bromate (KBrO3) has been studied as a function of particle size, in the range 53?C150???m, by isothermal thermogravimetry at different temperatures, viz. 668, 673, 678, and 683?K in static air atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of all samples of KBrO3 at all temperatures studied. The isothermal decomposition of all samples of KBrO3 was subjected to both model fitting and model-free (isoconversional) kinetic methods of analysis. Isothermal model fitting analysis shows that the thermal decomposition kinetics of all the samples of KBrO3 studied can be best described by the contracting square equation. Contrary to the expected increase in rate followed by a decrease with decrease in particle size, KBrO3 shows a regular increase in rate with reduction in particle size, which, we suggest, is an impact of melting of this solid during decomposition.  相似文献   

16.
Czobik EJ  Matousek JP 《Talanta》1977,24(9):573-577
Atomization temperatures have been measured for silver, cadmium, chromium, copper, nickel, lead, tin and zinc. The effect of various anions on the atomization temperatures of these metals has been examined. Of the anions investigated which were added as acids, only phosphate affected the atomization temperatures. For elements which atomized at a lower temperature than tin, phosphate addition resulted in an increased atomization temperature but those which atomized at a higher temperature than tin were not affected. These observations suggested that there are two mechanisms of atom formation in the graphite furnace. The first involves reduction of the metal oxide by carbon and is applicable only to compounds which can form oxides at temperatures lower than those required for the reduction process to occur. The second mechanism is direct decomposition of the metal compound to give metal atoms and is applicable to compounds of higher thermal stability which decompose at temperatures higher than those required for the reduction process.  相似文献   

17.
The thermal decomposition of salts (both normal and acid) of transition metals with carboxylic acids (maleic, ortho-phthalic and terephthalic) was studied in inert atmosphere. The residues after pyrolysis (up to 450°C) are composites including two structural components: an organic polymer matrix and spherical conglomerates from metal grains coated with polymer. Thermal decomposition of solid solutions of metal bimaleates (Co-Ni, Fe-Ni, Zn-Ni) was investigated. Thermogravimetric data (obtained at different rates of linear heating) were processed with 'Netzsch Thermokinetics' computer program. Kinetic parameters were calculated only for the first decomposition step, and the process is described by Prout-Tompkins equation of n th order with autocatalysis. Some properties of the resulting composites have been studied qualitatively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
The catalytic combustion of various organic compounds has been investigated over noble and non-noble metal catalysts using a fixed bed. It was concluded that the activity order of different organic compounds on a noble metal catalyst, is toluene > 2-butanone > benzene >n-heptane≈isopropyl alcohol > acrylonitrile > cyclohexane. On non-noble metal catalyst, it is isopropyl alcohol > 2-butanone > acrylonitrile > toluene >n-heptane > cyclohexane > benzene. In order to compare the thermal stability of catalysts, the catalytic reaction of toluene has been studied over noble and non-noble metal catalysts which were calcined at various temperatures up to 900°C for 3 h.  相似文献   

20.
A simple and reliable solid-phase extraction (SPE) method has been developed to synthesise two new sorbents: 6-propyl-2-thiouracil and 5,6-diamino-2-thiouracil physically loaded onto alumina surface, phases I and II, respectively. The synthesis of these new phases has been confirmed by IR-spectroscopy. The surface concentrations of the organic moieties were determined to be 0.182 and 0.562 mmol g?1 for phases I and II, respectively. The evaluation of the selectivity and metal uptake properties incorporated in these two alumina phases were also studied and discussed for 10 different metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pb(II) and Ag(I) under different controlling factors. The data obtained clearly indicated that the new SP-extractors have the highest affinity for retention of Hg(II) ions. Selective separation of Hg(II) from Ag(I) as one of the most interfering ion, in addition to the other eight coexisting metal ions under investigation, was achieved successfully using the new sorbents at pH = 9.0 under static conditions. Therefore, Hg(II) exhibits major retention percentage (100.0%) using phase I or II. However, Ag(I) exhibits minor retention percentage equal to 1.33% using phase I and 0.67% using phase II. On the other hand, the retention percentage of the other eight metal ions ranged (0.0–3.08%) using phase I and (0.0–1.54%) using phase II at the same pH. The new phases were applied for separation and determination of trace amounts of Hg(II) and Ag(I) spiked natural water samples using cold vapour atomic absorption spectroscopy and atomic absorption spectroscopy with no matrix interference. The high recovery values of Hg(II) and Ag(I) obtained using phases I and II were ranged 98.9 ± 0.1–99.2 ± 0.05% along with a good precision (RSD% 0.01–0.502%, N = 3) demonstrate the accuracy and validity of the new sorbents for separation and determination of Hg(II) and Ag(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号