首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Highly uniform and monodisperse KY3F10:Ln3+ (Ln=Eu, Ce, Tb) nanospheres, with an average diameter of 300 nm, have been successfully prepared through a simple template-free and surfactant-free stirring method under ambient conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The SEM images illustrate that these spheres were actually composed of randomly aggregated nanoparticles. The doped rare earth ions show their characteristic emission in the KY3F10 samples, i.e., Eu3+ 5D07FJ (J=1, 2, 3, 4), Tb3+ 5D47FJ (J=6, 5, 4, 3, 2) and Ce3+ 5d–4f transition emissions, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in KY3F10 nanospheres, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.  相似文献   

2.
A spectroscopic investigation on the effect of Ce3+ co-doping in fluoride KY3F10:Pr3+ crystals is presented. In particular spectroscopic measurements of three different samples of KY3F10 crystal doped with 0.3at% Pr3+ and co-doped with 0at%, 0.17at% and 0.3at% Ce3+ are discussed. Details on the growth of the crystals are also reported. Measurements were performed in the temperature range 10-300 K. Fluorescence and lifetime measurements have shown a cross relaxation between 3P0-1D2 levels of Pr3+ and 2F7/2-2F5/2 of Ce3+. Data exhibit that this effect is strictly related to the Cerium concentration.  相似文献   

3.
In this study Eu3+-doped yttrium fluorides were designed by ultrasound-assisted processes at different pH values (4.0–9.0). This novel strategy has enabled to obtain materials with intriguing morphologies and modulated crystal structures: α-KY3F10, δ–KY3F10·xH2O, and Y(OH)3–xFx. To date, the literature has primarily focused only on the α-phase of KY3F10. Yet, explaining the formation of the mostly uncharted δ-phase of KY3F10 remains a challenge. Thus, this paper offers the key to synthesizing both the α and the δ-phases of KY3F10 and also reports the first ultrasound-assisted process for the preparation of yttrium hydroxyfluorides. It is also unraveled the connection between the different pH-dependent reactions and the formation mechanisms of the compounds. In addition to this, the unique features of the Eu3+ ion have allowed to conduct a thorough study of the different materials and have endowed the compounds with photoluminescent properties. The results underscore a highly tunable optical response, with a wide gamut of color emissions (from orangish to red hues), lifetimes (from 7.9 ms to 1.1 ms) and quantum efficiencies (98–28%). The study unveils the importance of sonochemistry in obtaining luminescent fluorides with controlled crystal structures that can open up new avenues in the synthesis and design of inorganic materials.  相似文献   

4.
Differential gain spectra in the range 295–335 nm were measured in crystals of scheelite structure LiY1 ? x Lu x F4 (x = 0–1), doped by Ce3+ ions. It is shown that variation of Lu3+ and Y3+ ions relative content in LiY1 ? x Lu x F4 crystals allows to manipulate the spectral width of the amplification band. Cross-sections of excited-state absorption at the wavelengths of Ce3+ luminescence, probability ratios of formation and thermal destruction of color centers depending on the Y3+ ions content in LiY1 ? x Lu x F4 crystals were estimated. Even better gain characteristics have been demonstrated by LiLuF4:Ce3+, doped by Yb3+ ions. The highest optical gain coefficient with a wide amplification band among studied samples was observed in LiLuF4:Ce3+ crystal, codoped by Yb3+ ions.  相似文献   

5.
The kinetic and spectral characteristics of the complex dielectric constant of a Ce: YAG crystal under laser irradiation in 250–275 nm spectral range are investigated. The lifetimes of free charge carriers and charge carriers, localized at the lattice defects (color centers), are estimated. It was established that photoconductivity signal of the sample is essentially caused by one-photon ionization processes from the 2 F 5/2 ground state of Ce3+ ions.  相似文献   

6.
We show the possibility of obtaining UV luminescence from 5d-4f transitions of rare-earth ions in the BaY2F8: (Yb3+, Pr3+, Ce3+) crystal under upconversion excitation by standard laser diodes with lasing wavelengths of 960, 808, and 840 nm. Various upconversion mechanisms of pumping for populating the higher-lying energy levels of the active ions, as well as methods of adaptation of the active medium BaY2F8: (Yb3+, Pr3+, Ce3+) to these mechanisms, are considered.  相似文献   

7.
The evolution dynamics of absorption spectra induced in samples of Na4Y6F22:Ce3+, Yb3+ crystal by radiation resonant with 4f-5d transitions of Ce3+ ions was studied and analyzed. It was found that at least two types of color centers with different life times are induced in the studied crystal. It is established that the group of absorption bands in the UV spectral range that demonstrate long-term stability after excitation is caused by the 4f 13–4f 125d transitions of bivalent ytterbium ions. The sequence of processes that lead to the reduction of ytterbium ions from the trivalent to the bivalent state is proposed.  相似文献   

8.
The electron paramagnetic resonance (EPR) spectra of mixed crystals (BaF2)1?x? y(LaF3)x(CeF3)y (y = 0.001 = 0.1%, x = 0–0.02) are investigated in a magnetic field H‖C4 at a frequency of 9.5 GHz. The angular dependence of the EPR spectrum is measured for the sample with x = 0.02. The lines attributed to Ce3+ impurity centers with tetragonal symmetry and g factors (g = 0.75, g = 2.4) close to those measured for the KY3F10: Ce3+ compound are separated in the complex EPR spectrum. The assumption is made that the aforementioned impurity centers are cubooctahedral clusters of the La6F37 type in which one of the La3+ ions is replaced by the Ce3+ ion.  相似文献   

9.
This paper presents study of the gamma-rays induced radiation damage in the LaBr3:Ce crystal. The light output and transmittance are measured before and after γ-rays irradiations with an integrated dose up to 106 rad for two LaBr3:Ce samples. After γ-rays irradiation, LaBr3:Ce crystal shows very slow recovery process or has no recover under room temperature, indicating that the radiation damage in LaBr3:Ce crystal is not dose date dependent. Meanwhile, it's found that the radiation induced color centers are respectively peaked at the wavelength of 448 nm, 512 nm and 590 nm. Those color centers should be ascribed to the Vk, VF and F center respectively.  相似文献   

10.
Here we report laser test results of the new UV solid-state active medium based on a Ce3+, Yb3+:LiY0.4Lu0.6F4 mixed crystal pumped by radiation from Ce:LiCAF laser. The 10-Hz pulse repetition rate Ce3+, Yb3+:LiY0.4Lu0.6F4 laser yielded a maximum output power of 0.25 mJ at 311nm in non-optimized non-selective resonator with a maximal slope efficiency of 13%. Tunability from 304 to 332 nm was achieved in the selective single-prism resonator.  相似文献   

11.
Here, we present first results of systematic studies of host cation variation impact on spectral-kinetic, photochemical and gain properties of Ce3+-doped LiYF4 (YLF), LiLuF4 (LLF) and LiY1−xLuxF4 family crystals. 5d-4f luminescence decay of Ce3+ ions studies, together with pump-probe experiments, indicate that previously reported twice higher luminescence quantum yield in LLF compared with that of YLF crystals is provided by more efficient upper lasing level feeding due to recombination and higher color center destruction rate in LLF against YLF crystals. Namely, it is responsible for higher energetic characteristics of laser based on Ce3+:LLF crystals. Strong and wide pump-induced absorption band centered at 310 nm is observed in Ce3+:YLF. This band is shifted to blue and its intensity goes down with Lu content. We have evaluated free charges recombination rate, excited state absorption cross-section for Ce3+ ions and some other photodynamic processes related microparameters. Fitting results indicate that pump-induced color centers lifetime decreases with Lu-content in LiYF4-LiLuF4 mixture and it can be associated with more efficient color center bleaching by Ce3+ ions 5d-4f fluorescence.  相似文献   

12.
Ke Li  Changyu Shen 《Optik》2012,123(7):621-623
Nano-YAG:Ce3+ and YAG:Ce3+,Gd3+ phosphors were synthesized by glycothermal method. The X-ray diffraction (XRD) measurements showed that the samples can be well-crystallized at 600 °C. The transition electron microscope (TEM) showed that the particles have sizes mostly in the range between 35 and 100 nm. The YAG:Ce nano-phosphor had a wide emission band ranging from blue to yellow peaking at 532 nm, due to the transition from the lowest 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. Red-shift of emission peak wavelength from 532 nm to 568 nm has been achieved as doping Gd3+ ions into the YAG:Ce3+ to substitute some Y3+ ions. White LEDs were fabricated by combining GaN (460 nm) chip with the YAG:Ce3+ and YAG:Ce3+,Gd3+. Color rendering index of the white LED as a function of the ratios of theses two kinds of phosphors was studied. As the ratio of YAG:Ce3+,Gd3+ phosphor increased, the color rendering index of the LED improved significantly under the forward bias of 20 mA. As the ratio of YAG:Ce3+ and YAG:Ce3+,Gd3+ was 11:9, the white LED had a color rendering index, CIE chromaticity coordinates and color temperature Tc of 85, (0.3116, 0.3202) and 6564 K, respectively.  相似文献   

13.
For LiYF4:Ce3+, LiLuF4:Ce3+ and LuF3:Ce3+ crystals UV/visible emission and time-resolved VUV/UV excitation spectra were recorded at liquid helium temperature with spectral resolution of 0.1 nm for excitation spectra and better than 0.3 nm for emission spectra. Well resolved fine structures due to zero-phonon lines were clearly observed in both excitation and emission spectra for LiYF4:Ce3+ and LiLuF4:Ce3+. For LuF3:Ce3+ crystal no fine structure was detected in the spectra even at the highest spectral resolution. Under the host excitation, the fine structure for high-energy emission band of Ce3+ (5d-2F5/2) in LiLuF4:Ce3+ becomes well pronounced because of weaker reabsorption effect, as compared to Ce3+ 4f-5d absorption, due to small penetration depth for exciting radiation. As a result the crystal-field splitting for 2F7/2 and 2F5/2 levels of Ce3+ in LiLuF4 crystal was measured. First observation of zero-phonon lines at ∼81,550 and ∼82,900 cm−1 as well as vibronic side bands due to interconfigurational 4f14-4f135d transitions in Lu3+ is reported for excitation spectrum of LiLuF4:Ce3+.  相似文献   

14.
This study has been carried out using synchrotron radiation, time-resolved luminescence ultraviolet and vacuum ultraviolet spectroscopy, optical absorption spectroscopy, and thermal activation spectroscopy. It has been found that, in scintillation spectrometric crystals LaBr3: Ce,Hf characterized by a low hygroscopicity, along with Ce3+ centers in regular lattice sites, there are Ce3+ centers located in the vicinity of the defects of the crystal structure. It has also been found that the studied crystals exhibit photoluminescence (PL) of new point defects responsible for a broad band at wavelengths of 500–600 nm in the PL spectra. The minimum energy of interband transitions in LaBr3 is estimated as E g ~ 6.2 eV. The effect of multiplication of electronic excitations has been observed in the range of PL excitation energies higher than 13 eV (more than 2E g ). Thermal activation studies have revealed channels of electronic excitation energy transfer to Ce3+ impurity centers.  相似文献   

15.
Time and spectral dependences of the dielectric permittivity of the LiY1 ? x Lu x F4 (x = 0, 0.5, and 1) crystals doped with Ce3+ and co-doped with Yb3+ ions under UV laser excitation were studied by the 8-mm microwave resonant technique at room temperature. The obtained photoconductivity spectrum in 240–310 nm spectral range was interpreted as a stepwise photoionization spectrum of the Ce3+ ions due to sequential 4f–5d and 5d–6s transitions. Average lifetimes of free and defect trapped (color centers) charge carriers were estimated.  相似文献   

16.
17.
The results of electron paramagnetic resonance (EPR) studies of Ce3+ impurity ions in single crystals of lead thiogallate PbGa2S4 have been reported. The Ce3+ ions substitute for Pb2+ ions in the crystal lattice of PbGa2S4. A number of paramagnetic cerium centers in lead thiogallate have been observed. The spectra are described by the spin Hamiltonian of rhombic symmetry with the effective spin S = 1/2. The g factors of the main cerium centers have been determined. A large number of paramagnetic centers are due to both nonequivalent positions of lead and local charge compensation under the substitution Ce3+ ?? Pb2+.  相似文献   

18.
A method of UV spectroscopy was used to measure photoluminescence (PL) spectra and photoluminescence excitation (PLE) spectra in anion-defective alumina crystals exposed to high doses of gamma-radiation. An additional emission band in the range of 1.6–2.75 eV appears in the exposed crystals. Aggregate F2-type centers in different charge states are responsible for this band. It was found that growing intensity of PL aggregate centers occurs at doses corresponding to saturation of dose response and is accompanied by a sharp drop in the intensity of F+-band in the PL spectrum resulting from combination of F+-centers into aggregates. Uncharged F2-centers are formed when electrons are trapped by F2+ and F22+-centers. The main role of F+-centers in radiation-induced transformations of color centers under high-dose irradiation of anion-defective alumina crystals was indicated.  相似文献   

19.
Two sets of Bkq crystal field parameters and Bγkq intensity parameters have been calculated from the transition occuring between the Stark levels of Eu3+ in KY3F10. One of the calculations includes the J-mixing; the other not. The influence of the J-mixing on the intensities of the “forbidden” transition 5D07F0 and on the hypersensitive transitions are analysed.  相似文献   

20.
The photoluminescence properties of Eu2+, Ce3+ and Tb3+ doped α-Si3N4 have been studied and a possible structural model has been proposed on the basis of the Rietveld refinement of X-ray powder diffraction data. Nearly single phase rare earth doped α-Si3N4 was synthesized by a solid state reaction at 1600 °C in N2-H2 atmosphere starting from amorphous Si3N4 and rare earth oxides or nitrides. Because of small crystal field splitting of the 5d levels, the excitation and emission bands of Eu2+ and Ce3+ are positioned at higher energies as isolated ions in comparison with that in Ca-α-Sialon. Both Eu2+- and Ce3+-doped α-Si3N4 show blue band emission peaking at about 470 and 450 nm, respectively, under UV excitation. α-Si3N4:Tb3+ exhibits dominant green line emission mainly arising from 5D47FJ (J=6-3) with weak 5D37FJ (J=6-3) transitions of Tb3+ when excited by UV light. The thermal stability of α-Si3N4:Eu2+ is comparable with that of Ca-α-Sialon:Eu2+ and is much better than that of α-Si3N4:Ce3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号