首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental study of a water droplet impinging on a liquid surface   总被引:2,自引:0,他引:2  
An experimental study is presented for water droplet impingement on a liquid surface. The impaction process was recorded using a high-speed digital camera at 1,000 frames/s. The initial droplet diameter was fixed at 3.1 mm ± 0.1 mm, and all experiments were performed in atmospheric air. The impact velocity was varied from 0.36 m/s to 2.2 m/s thus varying the impact Weber number from 5.5 to 206. The impacted liquid surface consisted of two fluids, namely water and methoxy-nonafluorobutane, C4F9OCH3 (HFE7100). The depth of the water and HFE7100 pool was varied from 2 mm to 25 mm. The collision dynamics of water in the HFE7100 pool was observed to be drastically different from that observed for the water droplet impingement on a water pool. The critical impact Weber number for jet breakup was found to be independent of liquid depth. Water–HFE7100 impact resulted in no jet breakup over the range of velocities studied. Therefore, no critical impact Weber number can be defined for water–HFE7100 impact. Received: 27 June 2001/Accepted: 29 November 2001  相似文献   

2.
Understanding the radiation embrittlement of reactor pressure vessel (RPV) steels is required to be able to operate safely a nuclear power plant or to extend its lifetime. The mechanical properties degradation is partly due to the clustering of solute under irradiation. To gain knowledge about the clustering process, a Fe−1.1 Mn−0.7 Ni (at.%) alloy was irradiated in a test reactor at two fluxes of 0.15 and 9 ×1017 n E > 1MeV .m − 2.s − 1 and at increasing doses from 0.18 to 1.3 ×1024 n E > 1MeV .m − 2 at 300°C. Atom probe tomography (APT) experiments revealed that the irradiation promotes the formation in the α iron matrix of Mn/Mn and/or Ni/Ni pair correlations at low dose and Mn–Ni enriched clusters at high dose. These clusters dissolve partially after a thermal treatment at 400°C. Based on a comparison with thermodynamic calculations, we show that the solute clustering under irradiation can just result from an induced mechanism.  相似文献   

3.
Experiments are described in which a constant force F squeezed a fluid, either between two parallel circular plates, or between a plate and convex spherical lens. Newtonian fluids obeyed the relation of Stefan (1874) for plates, and the relation of Adams et al. (1994) for plate and lens. The non-Newtonian yield stress fluids Brylcreem, Laponite and Sephadex were squeezed between plates of various diameter D to attain a stationary separation h. Only for separations greater than h * (which depended on the fluid) did Brylcreem and Laponite obey the relation F/D 3 ∝ h −1 of Scott (1931) and give a yield stress in agreement with the vane method. For Sephadex the dependence of F/D 3 on h disagreed with Scott's relation, but varied as h −5/2 for h > 0.6 mm and h −3/2 for h < 0.6 mm. On rotating one plate in its plane the yield stress fluids at a fixed F suffered a marked decrease of h. This, and the existence of h *, are discussed in terms of the soft glassy material model of Sollich et al. (1997) and Sollich (1998). Brylcreem and Laponite were squeezed between a plate and lenses of various curvature and their yield stress obtained using the relation of Adams et al. (1994) was compared with measurements by plate-plate squeeze-flow and vane methods. Received: 12 April 2000 Accepted: 26 October 2000  相似文献   

4.
Two types of amorphous TiO2 particles with different particle sizes were synthesized by a simple sol–gel method and were characterized by X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transform infrared spectrometry. The electrorheological (ER) results show that the TiO2/silicone oil suspensions exhibited a remarkable ER effect. The static shear stress can be up to 130 kPa (shear rate 0.2 s − 1) under the DC electric field of 4 kV/mm at room temperature. The polar molecules present on the particles’ surface play a decisive role for the observed giant ER effect, which arises from the alignment of polar molecules in the gap between neighboring particles.  相似文献   

5.
The stress dependencies of the steady-state viscosity η and, particularly, that of the steady-state elastic compliance J e of various linear isotactic polypropylenes (PP) and one long-chain branched PP are investigated using creep-recovery tests. The creep stresses applied range from 2 to 10,000 Pa. In order to discuss the stress-dependent viscosity η and elastic compliance J e with respect to the influence of the weight average molar mass M w and the polydispersity factor M w/M n the PP are characterized by SEC–MALLS. For the linear PP, linear steady-state elastic compliances Je0J_{\rm e}^0 in the range of 10 − 5–10 − 3 Pa − 1 are obtained depending on the molar mass distribution. Je0J_{\rm e}^0 of the LCB-PP is distinctly higher and comes to lie at around 10 − 2 Pa − 1. Je0J_{\rm e}^0 is found to be independent of M w but strongly dependent on polydispersity. η and J e decrease with increasing stress. For the linear PP, J e as a function of the stress τ is temperature independent. The higher M w/M n the stronger is the shear thinning of η and the more pronounced is the stress dependence of J e. For the LCB-PP, the strongest stress dependence of η and J e is observed. Furthermore, for all PP J e reacts more sensitively to an increasing stress than η. A qualitative explanation for the stronger stress dependence of J e compared to η is given by analyzing the contribution of long relaxation times to the viscosity and elasticity.  相似文献   

6.
In this paper a one-way coupling between the nonlinear v 2 − f model by Pettersson Reif (Flow Turbul Combust 76:241–256, 2006) and an algebraic structure-based model have been investigated. Comparisons with available experimental and numerical data indicate that the compatibility between the two models is good and that their joint performance is satisfactory in the cases considered here. A full coupling between the models seems therefore a potentially viable route towards a significant advancement of engineering turbulence models and their predictive capabilities.  相似文献   

7.
A modified miniaturized version of the Direct Impact Compression Test (DICT) technique is described in this paper. The method permits determination of the rate-sensitive plastic properties of materials up to strain rate ∼105 s−1. Miniaturization of the experimental setup with specimen dimensions: diameter d S = 2.0 mm and thickness l S = 1.0 mm, Hopkinson bar diameter 5.2 mm, with application of a novel optical arrangement in measurement of specimen strain, makes possible compression tests at strain rates from ∼103 s−1 to ∼105 s−1. In order to estimate the rate sensitivity of a low-alloy construction steel, quasi-static, Split Hopkinson Pressure Bar (SHPB) and DICT tests have been performed at room temperature within the rate spectrum ranging from 5*10−4 s−1 to 5*104 s−1. Adiabatic heating and friction effects are analyzed and the final true stress versus true strain curves at different strain rates are corrected to a constant temperature and zero friction. The results have been analyzed in the form of true stress versus the logarithm of strain rate and they show two regions of a constant rate sensitivity : relatively low up to the strain rate threshold ∼50 s−1, and relatively high above the threshold, up to strain rate ∼4.5*104 s−1.  相似文献   

8.
The three Barnett-Lothe tensors H, L, S appear often in the Stroth formalism of two-dimensional deformations of anisotropic elastic materials [1–3]. They also appear in certain three-dimensional problems [4, 5]. The algebraic representation of H, L, S requires computation of the eigenvalues pv(v=1,2,3) and the normalized eigenvectors (a, b). The integral representation of H, L, S circumvents the need for computing p v(v=1,2,3) and (a, b), but it is not simple to integrate the integrals except for special materials. Ting and Lee [6] have recently obtained an explicit expression of H for general anisotropic materials. We present here the remaining tensors L, S using the algebraic representation. They key to our success is the obtaining of the normalization factor for (a, b) in a simple form. The derivation of L and S then makes use of (a, b) but the final result does not require computation of (a, b), which makes the result attractive to numerical computation. Even though the tensor H given in [6] is in terms of the elastic stiffnesses Cμ v while the tensors L, S presented here are in terms of the reduced elastic compliances s μv , the structure of L, S is similar to that of H. Following the derivation of H, we also present alternate expressions of L, S that remain valid for the degenerate cases p 1 p 2 and p1=p2 = p 3. One may want to compute H, L, S using either C μv or s μv v, but not both. We show how an expression in Cμ v can be converted to an expression in s μv v, and vice versa. As an application of the conversion, we present explicit expressions of the extic equation for p in Cμ v and s μv v. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
IntroductionInthispaper,weconsidertheellipticsystem(1λ) -Δu=f(λ,x,u)-v  (inΩ),-Δv=δu-γv(inΩ),u=v=0(onΩ),whereΩisasmoothboundeddomaininRN(N≥2)andλisarealparameter.Thesolutions(u,v)ofthissystemrepresentsteadystatesolutionsofreactiondiffusionsystemsderivedfromseveralap…  相似文献   

10.
Linear viscoelastic behavior was investigated for aqueous solutions of perfluorooctyl sulfonate (C8F17SO 3; abbreviated as FOS) micelles having a mixture of tetraethylammonium (N+(C2H5)4; TEA) and lithium (Li+) ions as the counter-ions. The solutions had the same FOS concentration (0.1 mol l−1) and various Li+ fractions in the counter-ions, φLi = 0−0.6, and the FOS micelles in these solutions formed threads which further organized into dendritic networks. At T ≤ 15 °C, the terminal relaxation time τ and the viscosity η, governed by thermal scission of the networks, increased with increasing φLi up to 0.55. A further increase of φLi resulted in decreases of τ and η and in broadening of the relaxation mode distribution. These rheological changes are discussed in relation to the role of TEA ions in thermal scission: Previous NMR studies revealed that only a fraction of TEA ions were tightly bound to the FOS micellar surfaces and these bound ions stabilized the thread/network structures. The concentration of non-bound TEA ions, CTEA *, decreased and finally vanished on increasing φLi up to φLi * ≅ 0.6, and the concentration of the bound TEA ions significantly decreased on a further increase of φLi. The non-bound TEA ions appeared to catalyze the thermal scission of the FOS threads, and the observed increases of τ and η for φLi < 0.55 were attributed to the decrease of CTEA *. On the other hand, the decreases of τ and η as well as the broadening of the mode distribution, found for φLi > 0.55 (where CTEA * ≅ 0), were related to destabilization of the FOS threads/networks due to a shortage of the bound TEA ions and to the existence of concentrated Li+ ions. Viscoelastic data of pure FOSTEA and FOSTEA/FOSLi/TEACl solutions lent support to these arguments for the role of TEA ions in the relaxation of FOSTEA/FOSLi solutions. Received: 12 October 1999/Accepted: 1 November 1999  相似文献   

11.
An Australian hard wheat flour–water dough has been characterised using parallel plate and capillary rheometers over an extensive range of apparent shear rates (10 − 3–103 s − 1) relevant to process conditions. Torsional measurements showed that the shear viscosity of the dough increased with strain to a maximum value and then decreased, suggesting a breakdown of the dough structure. Both torsional and capillary experiments revealed the shear-thinning behaviour of the dough. The wall slip phenomenon in capillary rheometry was investigated and found to be diameter dependent and occurred at a critical shear stress of approximately 5–10 kPa. A two-regime power law behaviour was observed, with the power law index approximately 0.3 in the low shear rate range increasing to 0.67 in the high shear rate range. Pressure fluctuation was observed in the capillary data and increased with shear rate, in particular, at shear rates approaching 104 s − 1. The results demonstrate that capillary rheometry is a viable means of rheologically testing dough at high shear rates provided pressure fluctuation is carefully monitored and capillary rheometry corrections, including wall slip, are accounted for.  相似文献   

12.
In this paper, we consider v(t) = u(t) − e tΔ u 0, where u(t) is the mild solution of the Navier–Stokes equations with the initial data u0 ? L2(\mathbb Rn)?Ln(\mathbb Rn){u_0\in L^2({\mathbb R}^n)\cap L^n({\mathbb R}^n)} . We shall show that the L 2 norm of D β v(t) decays like t-\frac |b|-1 2-\frac n4{t^{-\frac {|\beta|-1} {2}-\frac n4}} for |β| ≥ 0. Moreover, we will find the asymptotic profile u 1(t) such that the L 2 norm of D β (v(t) − u 1(t)) decays faster for 3 ≤ n ≤ 5 and |β| ≥ 0. Besides, higher-order asymptotics of v(t) are deduced under some assumptions.  相似文献   

13.
For the differential equation u″ = f(t, u, u′), where the function f: R × R 2 → R is periodic in the first variable and f (t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Published in Neliniini Kolyvannya, Vol. 11, No. 4, pp. 495–500, October–December, 2008.  相似文献   

14.
A new microscale uniaxial tension experimental method was developed to investigate the strain rate dependent mechanical behavior of freestanding metallic thin films for MEMS. The method allows for highly repeatable mechanical testing of thin films for over eight orders of magnitude of strain rate. Its repeatability stems from the direct and full-field displacement measurements obtained from optical images with at least 25 nm displacement resolution. The method is demonstrated with micron-scale, 400-nm thick, freestanding nanocrystalline Pt specimens, with 25 nm grain size. The experiments were conducted in situ under an optical microscope, equipped with a digital high-speed camera, in the nominal strain rate range 10−6–101 s−1. Full field displacements were computed by digital image correlation using a random speckle pattern generated onto the freestanding specimens. The elastic modulus of Pt, E = 182 ± 8 GPa, derived from uniaxial stress vs. strain curves, was independent of strain rate, while its Poisson’s ratio was v = 0.41 ± 0.01. Although the nanocrystalline Pt films had the elastic properties of bulk Pt, their inelastic property values were much higher than bulk and were rate-sensitive over the range of loading rates. For example, the elastic limit increased by more than 110% with increasing strain rate, and was 2–5 times higher than bulk Pt reaching 1.37 GPa at 101 s−1.  相似文献   

15.
The passage of solid spheres through a liquid–liquid interface was experimentally investigated using a high-speed video and PIV (particle image velocimetry) system. Experiments were conducted in a square Plexiglas column of 0.1 m. The Newtonian Emkarox (HV45 50 and 65% wt) aqueous solutions were employed for the dense phase, while different silicone oils of different viscosity ranging from 10 to 100 mPa s were used as light phase. Experimental results quantitatively reveal the effect of the sphere’s size, interfacial tension and viscosity of both phases on the retaining time and the height of the liquid entrained behind the sphere. These data were combined with our previous results concerning the passage of a rising bubble through a liquid–liquid interface in order to propose a general relationship for the interface breakthrough for the wide range of Mo 1/Mo 2 ∈ [2 × 10−5–5 × 104] and Re 1/Re 2 ∈ [2 × 10−3–5 × 102].  相似文献   

16.
Bentonite clay is a vital ingredient of drilling mud. The time-dependent and high shear thinning yield stress behaviour of drilling mud is essential for maintaining wellbore stability and to remove cuttings, cool and clean the drill bit of debris. As-prepared 3, 5 and 7 wt.% bentonite clay slurries displayed time-dependent behaviour where the yield stress (measured after quick stirring) decreased with time of rest. An equilibrium value is reached after 24 h. Despite the low solids concentration, the yield stress is already relatively high and is displayed at all pH level. The yield stress is maximum at pH 2 and minimum at pH ∼ 7. This yield stress is due to the formation of gel structure by the swelling clay particles. However the addition of phosphate additives such as (PO3)19 − , (P3O10)5 −  and (P2O7)4 −  completely dispersed the clay slurries at pH above 6. At pH below 6, yield stress is still present but is 3-folds smaller than that of the pure bentonite slurry. With phosphate additives, the magnitude of the critical zeta potential at the complete dispersion pH is ca 48 mV. However for the pure bentonite, the slurry remained flocculated at zeta potential of >50 mV in magnitude. Interestingly, (P2O7)4 −  anions is more effective than the other two phosphate additives in reducing the yield stress at low pH, ∼ 2.0.  相似文献   

17.
Shear and extensional viscosities and wall slip are determined simultaneously under extrusion processing conditions using an on-line rheometer. Because it is not possible to independently control flow rate and temperature, classical methods for interpretation of capillary data cannot be used with on-line rheometry. This limitation is overcome using computational optimization to fit parameters in a flow model. This consists of three parts, representing shear viscosity, extensional viscosity, and wall slip. Three-parameter, power law forms, based on local instantaneous deformation rates and including temperature dependence, are used for each, and analytic solutions applied for entry flow and flow in the capillary. For entry flow, the Cogswell–Binding approach is used, and for developed flow in the capillary a solution incorporating wall slip is derived. The rheometer, with interchangeable capillaries, is mounted in place of the die on a rubber profile extrusion line. Pressure drops and temperatures for extrusion of an EPDM rubber through 2 mm diameter capillaries of length 0, 2, 3, 4, and 5 mm are logged and flow rates determined for a range of extruder speeds (5 to 20 rpm). Pressures ranged from 60 to 75 bar and temperatures from 86 to 116 °C. Mean flow velocity in the capillaries was between 5 × 10−3 and 5 × 10−1 m s−1. The nine material parameters are optimized for best fit of the analytic pressure drops to experimental data, using about 100 data points, with the Levenberg–Marquardt method. It is concluded that flow is dominated by extension and wall slip. Shear flow appears to play little part. The slip model indicates that slip velocity increases much more rapidly than the wall shear stress (in the range 0.5–1 MPa) and decreases with temperature for a given stress level. Results for the (uniaxial) extensional viscosity represent an engineering approximation to this complex phenomenon at the high strains (approximately 200) and high extension rates (up to 800 s−1) applying in the extrusion. Results indicate a slight extension hardening and a decrease with temperature. Results are put into the context of the available studies in the literature, which, particularly with regard to wall-slip and extensional flow, consider conditions far removed from those applying in industrial extrusion. The present methods provide a powerful means for flow characterization under processing conditions, providing data suitable for use in computer simulations of extrusion and optimization of die design.  相似文献   

18.
Measurement of drainage relative permeability by the centrifuge method was first introduced by Hagoort (SPE J. 29(3):139–150, 1980). It has been shown that capillary end effects can cause error in the measurement of relative permeability if a minimum rotational speed is not honoured. To determine the minimum rotational speed that makes the capillary end effect negligible, ω min, we propose that the value of capillary-gravity number, N cg, should be of the order of 10−2 or smaller. This conclusion is based on the use a Forward–backward scheme consisting of a forward numerical simulator developed for centrifuge experiments and applying Hagoort’s method as a backward model. The article presents the use of this Forward–backward scheme as a powerful tool for error analysis such as determining the impact of capillary end effects. By using this loop, we first determine ω min for specific core and fluid properties. Later, we generalize the ω min calculations by using the definition of N cg as a “rule of thumb” for designing relative permeability experiments by centrifuge method. We also demonstrate another use of this loop for controlling the quality of the experimental data.  相似文献   

19.
The combined effect of a vertical AC electric field and the boundaries on the onset of Darcy–Brinkman convection in a dielectric fluid saturated porous layer heated either from below or above is investigated using linear stability theory. The isothermal bounding surfaces of the porous layer are considered to be either rigid or free. It is established that the principle of exchange of stability is valid irrespective of the nature of velocity boundary conditions. The eigenvalue problem is solved exactly for free–free (F/F) boundaries and numerically using the Galerkin technique for rigid–rigid (R/R) and lower-rigid and upper-free (F/R) boundaries. It is observed that all the boundaries exhibit qualitatively similar results. The presence of electric field is emphasized on the stability of the system and it is shown that increasing the AC electric Rayleigh number R ea is to facilitate the transfer of heat more effectively and to hasten the onset of Darcy–Brinkman convection. Whereas, increase in the ratio of viscosities Λ and the inverse Darcy number Da −1 is to delay the onset of Darcy–Brinkman electroconvection. Besides, increasing R ea and Da −1 as well as decreasing Λ are to reduce the size of convection cells.  相似文献   

20.
We consider the nonlinear elliptic system
where and is the unit ball. We show that, for every and , the above problem admits a radially symmetric solution (u β , v β ) such that u β v β changes sign precisely k times in the radial variable. Furthermore, as , after passing to a subsequence, u β w + and v β w uniformly in , where w = w +w has precisely k nodal domains and is a radially symmetric solution of the scalar equation Δww + w 3 = 0 in , w = 0 on . Within a Hartree–Fock approximation, the result provides a theoretical indication of phase separation into many nodal domains for Bose–Einstein double condensates with strong repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号