首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Collisional relaxation has been considered for millimeter lines of carbon monoxide at room temperature. Accurate measurements of carbon dioxide- and rare gases-broadened widths have been performed on the J = 3 ← 2 rotational line of 12CO by using a video-type spectrometer. Measurements of nitrogen-, oxygen-, and xenon-broadened widths of the J = 5 ← 4 rotational line of 13CO were also carried by using a frequency-modulated spectrometer. A lineshape study performed on all the investigated binary systems provide confirmation that Voigt profile is not a suitable model to analyse experimental lines in the millimeter-waves region. On one hand, using this profile in the low pressure range, i.e. in the Doppler regime, the retrieved collisional linewidths do not follow a linear variation with the perturbing gas pressure. On the other hand, regardless of the pressure, lineshapes exhibit a narrowed profile. An accurate analysis of the pressure dependence of relaxation rates show that the Galatry profile is not appropriate and that experimental lineshapes are actually Speed Dependent Voigt profiles. Accurate broadening parameters were retrieved from this profile and compared to previous reported values and predictions calculated from the Robert-Bonamy formalism. Finally a variation of the ratio of relaxation speed dependence to broadening parameters versus relative masses of the collision partners is presented.  相似文献   

2.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

3.
The rotational spectra of the deuterium cyanide isotopic species DCN, D13CN, DC15N, and D13C15N were recorded in the vibrational ground and first excited bending state (v2=1) up to 2 THz. The R-branch transitions from J=3←2 to J=13←12 were measured with sub-Doppler resolution. These very high resolution (∼70 kHz) and precise (±3-10 kHz) saturation dip measurements allowed for resolving the underlying hyperfine structure due to the 14N nucleus in DCN and D13CN for transitions as high as J=10←9. Additional high JR-branch (J=25←24 to J=28←27) transitions around 2 THz and direct l-type (ΔJ=0, J=19 to J=25) transitions from 66 to 118 GHz were recorded in Doppler-limited resolution. For the ground state of D13C15N, the J=1←0 transition was measured for the first time. The transition frequency accuracies for the other deuterated species were significantly improved. These new experimental data, together with the available infrared rovibrational data and previously measured direct l-type transitions, were subjected to a global least squares analysis for each isotopomer. This yielded precise sets of molecular constants for the ground and first excited vibrational states, including the nuclear quadrupole and magnetic spin-rotation coupling constants of the 14N nucleus for DCN and D13CN. The hyperfine structure due to the D, 13C, and 15N nuclei have not been resolved, but led to a broadening of the observed saturation dips.  相似文献   

4.
The line profile of the CO J=5-4 transition at 576 GHz was measured precisely by a BWO-based submillimeter wave spectrometer. The foreign-gas effect on the broadening and shift of rare gases were determined together with the self-collision effects. The observed profiles exhibit clearly the Dicke narrowing effect for the cases of rare gas mixtures, and the Galatry function was used as the lineshape function in the analysis.  相似文献   

5.
Since water is a fundamental component of the atmosphere and it is well established that the accuracy of collisional broadening parameters has a crucial influence on reduction of remote sensing data, we decided to investigate the self-, N2- and O2-broadening parameters of the J=61,6←52,3 (22.2 GHz) rotational transition of water in the temperature range 296-338 K. Due to the relevance of this water line, this investigation should be considered of particular interest in monitoring the Earth's atmosphere, and therefore a particular effort has been made in order to reduce instrumental as well as systematic errors. Experimental determinations have also been supported by theoretical calculations.  相似文献   

6.
Pressure-induced foreign-broadening lineshape parameters of the carbon dioxide rovibrational transitions belonging to the (30012)←(00001) overtone band near the 1.573 μm wavelength region are measured by using a tunable diode laser photoacoustic spectrometer. The spectroscopic analysis has concerned the first 11 lines of the R branch. For these lines, the air- and Ar-broadening coefficients are measured at room temperature (∼298 K). The measured broadening coefficients of all the transitions of 12C16O2 are compared with those given in the HITRAN04 database and former measurements with a different spectroscopic method. Agreements and discrepancies are underlined and briefly discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficient of carbon dioxide transitions.  相似文献   

7.
The collisional relaxation of the J=5←4 rotational transition of CO induced by carbon monoxide, nitrogen, and oxygen has been studied at room temperature. Pressure-broadening parameters were determined as 3.29(2), 2.61(2), and 2.30(2) MHz/Torr for CO, N2, and O2 buffer gases, respectively. Experimental deviations from the Voigt line shape profile have been observed which are mostly the effect of a narrowing in the spectral line core. The difference between the model profile and the experimental profile is less than 0.5% of the maximum line amplitude in the investigated pressure range 0.2-5 Torr. In addition, a small positive collision-induced shift of the line center frequency was observed for the pure gas, corresponding to a pressure self-shift parameter of 6(3) kHz/Torr.  相似文献   

8.
Depopulation rates of rotational levels in the v3 = 2 vibrational state of 12CH4 are investigated by a pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2ν3 lines. The time evolution in population of the excited level after the pumping pulse is monitored by tuning the probe laser to a (3ν3 ← 2ν3) line corresponding to a transition with the excited rotational level as the lower level. Measurements were performed from room temperature down to 100 K in pure CH4 and in CH4-N2 mixtures. The rotational relaxation rate coefficients are given for the J = 1, A2, J = 1, E, J = 1, F2 and J = 0, F2 levels. The results are compared with the available data on line broadening coefficients. The temperature dependence of the data on N2-broadening is particularly well reproduced by the power law deduced from the results on rotational relaxation.  相似文献   

9.
We report on linewidth measurements on the J=24K,11−23K,10 and J=38K,33−37K,32 millimeter wave transitions in the ground vibrational state of nitric acid, located near 470.23 and 544.36 GHz, respectively. Experiments were performed with N2 and O2 as perturber molecules, in the 240-350 K temperature range by using a video-type spectrometer. The foreign-gas broadening parameters and their temperature dependence coefficients were determined using the Voigt profile, no narrowing effect being observed. In order to check the reliability of reported values, we carried out measurements on the J=14K,12−13K,11 transition located near 206.6 GHz, previously observed in two other laboratories. For this last line all the reported values are consistent themselves within one claimed standard deviation.  相似文献   

10.
It is well established that water plays a fundamental role in various atmospheric phenomena and that the accuracy of its collisional broadening parameters has a crucial influence on reduction of remote sensing data. Nevertheless, in this field the experimental data are still scarce and consequently the estimates reported in spectroscopic databases are not always reliable and/or accurate. In the view of filling this gap, the self-, N2- and O2-broadening parameters of the J=11,1←00,0 rotational transition of water (1.113 THz) have been determined at room temperature. The experimental investigation has also been supported by theoretical calculations.  相似文献   

11.
Extensive experiments on the K = 3 component of the J = 12-11 rotational transition of acetonitrile CH3C14N, located near 220.7 GHz, were performed at different temperatures in the range 235-350 K. They allow determining the N2-, H2-, and He-broadening coefficients, as well as their temperature dependences. More specific measurements on all the K-components of the involved transition perturbed by N2 at 303 K allow to point out a clear decreasing of the broadening coefficient with increasing K. Narrowing effects are clearly observed, and experimental lines were analysed both with Voigt and speed dependent Voigt profiles; but no exhaustive lineshape study was carried out. All the experimental parameters are compared with results derived from a semiclassical calculation of collisional interactions, including electrostatic, induction, and dispersion energy contributions.  相似文献   

12.
Using a high-resolution tunable diode laser photoacoustic spectrometer, self-, N2 and O2 pressure broadening coefficients for the first 11 transitions of 12C16O2 in the R branch of the (30012) ← (00001) overtone band at the 6348 cm−1 have been revisited at room temperature (∼298 K). Air-broadening parameters have also been calculated from the N2 and O2 measurements. The dependence of the broadening on rotational quantum number m is discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficients of carbon dioxide transitions. The results are compared to our previous measurements and to the values reported in the HITRAN04 database and by other research group with a different spectroscopic technique.  相似文献   

13.
Numerous satellite and ground-based remote sensing measurements rely on the ability to calculate O2A-band [b1Σg+X3Σg(0,0)] spectra from line parameters, with combined relative uncertainties below 0.5% required for the most demanding applications. In this work, we combine new 16O2A-band R-branch measurements with our previous P-branch observations, both of which are based upon frequency-stabilized cavity ring-down spectroscopy. The combined set of data spans angular momentum quantum number, J′ up to 46. For these measurements, we quantify a J-dependent quadratic deviation from a standard model of the rotational distribution of the line intensities. We provide calculated transition wave numbers, and intensities for J′ up to 60. The calculated line intensities are derived from a weighted fit of the generalized model to an ensemble of data and agree with our measured values to within 0.1% on average, with a relative standard deviation of ≈0.3%. We identify an error in the calculated frequency dependence of the O2A-band line intensities in existing spectroscopic databases. Other reported lineshape parameters include a revised set of ground-state energies, self- and air-pressure-broadening coefficients and self- and air-Dicke-narrowing coefficients. We also report a band-integrated intensity at 296 K of 2.231(7)×10−22 cm molec−1 and Einstein-A coefficient of 0.0869(3) s−1.  相似文献   

14.
For the purpose of atmospheric applications, we have measured N2- and O2-induced broadenings and shapes of rotational lines of N2O in the 235-350 K temperature range, precisely the J=8←7, J=22←21, and J=23←22 lines, located near 201, 552, and 577 GHz, respectively. The analysis of experimental lineshapes shows up significant deviations from the Voigt profile, which are characteristic of line narrowing processes. In a first step, the Voigt profile was considered for the determination of pressure broadening parameters and of their temperature dependencies. Results are in good agreement with the dependence from rotational quantum number previously observed for other rotational and rovibrational lines. They are well explained by calculations based on a semiclassical formalism that includes the atom-atom Lennard-Jones potential in addition to electrostatic interactions up to hexadecapolar contributions. In a second step, observed lineshapes were analyzed by using the Galatry profile and a speed-dependent Voigt profile. The nonlinear pressure behavior observed for the diffusion rate β involved in the Galatry profile leads to rule out the possible role of velocity/speed changing collisions, and to infer that discrepancies from the Voigt profile result from the dependence of relaxation rates on molecular speeds. This interpretation is supported by the comparison of optical and kinetic radii and confirmed by theoretical calculations of relaxation rates. Finally, it can be claimed that, for the N2O-N2 and N2O-O2 systems, deviations from the Voigt profile are explained by a speed-dependent Voigt profile.  相似文献   

15.
Line position, intensity and line shape parameters (Lorentz widths, pressure shifts, line mixing, speed dependence) are reported for transitions of the 30013 ← 00001 band of 16O12C16O (ν0 = 6227.9 cm−1). The results are determined from 26 high-resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To minimize the systematic errors of the retrieved parameters, we constrained the multispectrum nonlinear least squares retrieval technique to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line by line. Self- and air-broadened Lorentz width and pressure-induced shift, speed dependence and line mixing (off-diagonal relaxation matrix elements) coefficients were adjusted individually. Errors were further reduced by simultaneously fitting the interfering absorptions from the weak 30012 ← 00001 band of 16O13C16O as well as the weak hot bands 31113 ← 01101, 32213 ← 02201, 40014 ← 10002 and 40013 ← 10001 of 16O12C16O in this spectral window. This study complements our previous work on line mixing and speed dependence in the 30012 ← 00001 band (ν0 = 6347.8 cm−1) [V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc. 242 (2007) 90-117] and provides key data needed to improve atmospheric remote sensing of CO2.  相似文献   

16.
Line profiles of the J = 1-0 transition of the hydrogen chloride, H35Cl and H37Cl isotopomers, were measured with a BWO-based submillimeter-wave spectrometer at AIST in real form: three hyperfine transitions for each isotopomer, i.e., total six lines at 625 and 626 GHz. The effect of foreign gases on the broadening and shift was determined for N2, O2, and Ar. The modified Voigt function was applied as the line shape function for preliminary analysis, where the collisional-narrowing effect was clearly observed. In the final analysis, we applied the Galatry function and determined the integral intensity, line center position, Lorentzian width, and contraction parameter for each absorption line. The magnitudes of the foreign-gas pressure-broadening coefficients decrease in order of N2, O2, and Ar. The line-shift coefficients were clearly observed, the magnitudes of which decrease in order of Ar, O2, and N2. The pressure dependence of contraction parameter was determined, although with poor precision.  相似文献   

17.
Eu3+ ion-doped B2O3-, SiO2-, and P2O5-based glasses were prepared by the melt-quenching method, and their absorption, fluorescence, and excitation spectra were recorded and assigned. The glass composition dependence of the fluorescence was investigated to obtain the high brightness of the red fluorescence due to the 5D07F2 transition of the Eu3+ ion. The integrated intensity of the red fluorescence was the strongest at the Eu2O3 concentration of 3.5 mol% because the cross-relaxation (CR) processes, (5L65DJ)→(7FJ*7FJ#) and (5DJ5DJ)→(7FJ*7FJ#) (3≧J>J′≧0, 6≧J*>J#≧0) between the Eu3+ ions were promoted, but the CR processes, (5D07FJ)→∑m(7FJ*7FJ)m (6≧J′≧0, 6≧J*>J≧0), between the excited Eu3+ ion at the 5D0 level and m ions of Eu3+ in the 7FJ levels were depressed. The former CR processes, (5L65DJ)→(7FJ*7FJ#) and (5DJ5DJ)→(7FJ*7FJ#) were enhanced in the host glasses consisted of the cations with small ionic radius. In this study, a 70B2O3-30CaO-3.5Eu2O3 glass showed the strongest red fluorescence.  相似文献   

18.
The electric dipole moment of bromofluoromethane, CH279BrF, has been determined with a good accuracy by observing the second order ΔMJ = 0 Stark spectrum of the J = 32,1 ← 31,2, J = 52,3 ← 51,4 and J = 52,4 ← 51,5 rotational transitions. In addition, the equilibrium geometry and dipole moment have been evaluated using highly accurate ab initio calculations. By comparing the experimental [μa = 0.3466(11) D and μb = 1.704(26) D] and theoretical [μa = −0.339 D and μb = −1.701 D] dipole moment components, a very good agreement has been found.  相似文献   

19.
Enhancement spectra of the collision-induced absorption in the first overtone region 5500-6750 cm−1 of D2 in the D2-Ar, D2-Kr, and D2-Xe binary mixtures were studied at 298 K for base densities of D2 in the range 55-251 amagat and for partial densities of Ar, Kr, and Xe in the range 46-384 amagat. The observed spectra consist of the following quadrupolar transitions: O2(3), O2(2), Q2 (J), J = 1-5 and S2 (J), J = 0-5 of D2. Binary and ternary absorption coefficients were determined from the integrated absorption coefficients of the band. Profile analyses of the spectra were carried out using the Birnbaum-Cohen (BC) lineshape function and characteristic lineshape parameters were determined from the analyses.  相似文献   

20.
The vibrotational absorption spectra of the AX electronic transition of I79/81Br were measured in the 11 330- to 13 220-cm−1 region using a Ti:sapphire ring laser. The P-, Q-, and R-branch lines of the rotational states from J=10 to 100 belonging to the v′←v″=(3∼20)′,←(1∼6)″ bands were assigned. The P- and R-branch lines, unlike the Q-branch lines, were split into the doublet by the nuclear quadrupole coupling effect of the I atom. The quadrupole coupling constants of eQq0 and eQq2 in the A state were estimated to be −0.030±0.018 and −0.062±0.018 cm−1, respectively, by using the first order perturbation theory. The unperturbed line positions for the rotational lines higher than J=20 were determined. The Dunham coefficients of the X state were determined by the least squares fitting method using the pseudo vibrotational transition wavenumbers obtained by calculating the combination differences between the electronic spectral lines assigned and the far infrared vibrotational lines reported by Nelander et al. (7). The spectroscopic constants of Tv′, Bv′, Dv′, and Hv′ of the A state were determined suitable for the vibrational states from v′=3 to 20 by using a least squares fitting procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号