首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glasses with a high content of niobium oxide are of significant interest for electro-optics and nonlinear optics. In the present paper we report the results of the investigation of the submicroscopic structure and nonlinear optical properties of (1-x)KNbO3xSiO2 (KNS) glasses (x = 0.05–0.30) by XRD, SANS, electron microscopy and second harmonic generation (SHG) technique. Vitreous samples were fabricated by rapid melt cooling, via pressing the melt by steel plates, quenching between rotating metal rolls or splat cooling in air or nitrogen flow. Glasses with x < 0.15 are shown to possess a micro-inhomogeneous structure with regions enriched by SiO2. On the contrary, as-quenched glasses with x > 0.15 are found by SANS to be homogeneous, but form nanostructures enriched by SiO2 after heat-treatment. At temperatures below ~(Tg + 50 °C), SiO2-enriched regions grow slightly, whereas their chemical composition shifts considerably closer to SiO2. The data on the nano-inhomogeneous structure enables clarifying the complicated Tg(x) dependence of KNS glasses. SHG-active KNbO3 phase precipitates at later stages of crystallization when the glass starts to lose its transparency, and crystallization of perovskite-like KNbO3 is accompanied by the enhancement of SHG efficiency by several orders of magnitude.  相似文献   

2.
Glass formation in Li2O-Nb2O5-GeO2 (LNG) system, the structure and crystallization behavior of glasses that have compositions near the ratio Li2O/Nb2O5 ∼ 1 corresponding to stoichiometry of ferroelectric phase LiNbO3 were examined by differential thermal analysis, X-ray diffraction, small-angle neutron scattering and second harmonic generation (SHG). LNG glasses were subjected to heat treatments at temperatures in the range between Tg and temperature of the first exothermic peak in order to initiate nonlinear optical activity by nanoheterogeneity formation. Transparent nanostructured glasses with second-order optical nonlinearity were obtained for compositions characterized by the Li2O/Nb2O5 molar ratio ranging from 0.83 to 1.2 and GeO2 40-45 mol%. As prolonged heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 the origin of SHG in transparent LNG glasses is supposed to be connected predominantly with polarity of nanoheterogeneities formed at the initial stage of phase separation.  相似文献   

3.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   

4.
Potassium niobium silicate (KNS) glasses the composition of which is characterized by the K2O/Nb2O5 molar ratio ranging from 0.85 to 1.2 and SiO2 50-54 mol% were examined in order to clarify the influence of chemical composition on formation of transparent nanostructured state of glasses. Differential thermal analysis, X-ray diffraction and scanning electron microscopy were used to study the non-isothermal crystallization of the KNS glasses as well as their morphological features. It was found that all glasses devitrify in three steps forming unidentified phases at the first two ones while at higher temperature (1000-1100 °C) the crystallization of K3Nb3O6Si2O7 takes place. For prolonged heat treatment time (more than 5 h) at high temperature (1050-1100 °C) the transformation of this phase into the KNbSi2O7 ferroelectric one occurs in some extent. Nanostructuring occurs at the first stage of the devitrification process. It results from two partially overlapped processes: amorphous phase separation and subsequent crystallization. It was shown that only for the glass with the K2O/Nb2O5 molar ratio equal to 0.85 and SiO2 50 mol% it is possible to separate the above processes by isothermal heat treatments at 680 °C obtaining fully transparent nanostructured samples. These samples contain nanocrystals 10 times smaller than the amorphous inhomogeneities of the phase separated matrix in which are dispersed.  相似文献   

5.
《Journal of Non》2006,352(30-31):3236-3243
Several ternary (NixNbySnz) refractory alloy glasses (RAGs) were studied at elevated temperatures in order to assess the stability of the amorphous state, i.e. devitrification, and to identify subsequent phase transformations in these materials. differential scanning calorimetry (DSC) experiments indicated a complex phase transformation sequence with several distinct crystallization and melting events being recorded above the glass transition temperature, Tg. Below Tg the RAG samples were studied with an in situ environmental X-ray furnace facility, which allowed step-wise isothermal ramping experiments commencing at a temperature below the reduced temperature of T/Tg  0.80. Distinct crystalline phases were observed when T/Tg  0.84 for ternary RAG alloys, while similar experiments on Zr-based Vit 106 glass alloys did not reveal any apparent phase separation until T/Tg  0.96. The phase separation kinetics followed an Arrhenius type of relationship with Ni3Sn, and Nb2O5 being the principle crystalline precipitates.  相似文献   

6.
Potassium-lithium niobiosilicate (KLiNS) glasses with a composition of (27 ? x)K2O · xLi2O · 27Nb2O5 · 46SiO2 (x = 0, 3, 12 and 20) have been synthesized by a melt-quenching method. The glass structure and devitrification behavior have been studied by Raman spectroscopy, DTA, and XRD. By increasing the lithium content, less distorted niobium octahedra increase, indicating a niobium clustering. This change strongly affects the crystallization behavior. In the glasses x = 0 and x = 3, just above Tg, only nanocrystals of an unidentified phase are formed, while for x = 12 and x = 20 potassium lithium niobate (KLN) solid solutions with tetragonal tungsten–bronze structure crystallize by bulk nucleation. In these glasses, LiNbO3 crystallizes at higher temperature by surface nuclei. Ultimately, it is possible to produce nanostructured glasses based on KLN nanocrystals, by partial replacement of K by Li.  相似文献   

7.
A new criterion ω2, defined as Tg/(2Tx?Tg)?Tg/Tl (wherein Tg is the glass transition temperature, Tx the onset crystallization temperature, and Tl the liquidus temperature), has been proposed to assess the glass-forming ability (GFA) of bulk metallic glasses (BMGs) based on the classical crystallization theory and the crystallization resistance. The analysis indicates that the factors Tg/(2Tx?Tg) and Tg/Tl could reflect the crystallization resistance and liquid phase stability of metallic glasses, respectively. From the available experimental data in literatures, the new criterion ω2 has a better correlation with the GFA of metallic glasses than all other existing criteria such as Trg(=Tg/Tl), ΔTx(=Tx?Tg), γ(=Tx/(Tg+Tl)), ΔTrg(=(Tx ? Tg)/(Tl ? Tg)), α(=Tx/Tl), β(=Tx/Tg + Tg/Tl), δ(=Tx/(Tl ? Tg)), φ(=TrgTx/Tg)0.143), γm(=(2Tx ? Tg)/Tl), β(=Tx × Tg/(Tl ? Tx)2) and ξ(=ΔTx/Tx+Tg/Tl). It has also been demonstrated that this ω2 parameter is a simple and efficient guideline for exploring new BMG formers.  相似文献   

8.
9.
《Journal of Non》2007,353(13-15):1247-1250
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80−xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (Tg) and two crystallization reactions (Tc1 & Tc2) upon heating. It is also found that there is only a marginal change in Tg with the addition of up to about 10% of Ga; around this composition an increase is seen in Tg which culminates in a local maximum around x = 15. The decrease exhibited in Tg beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80−xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in VT around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of Tc1 is found to be very similar to that of VT of As20Te80−xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80−xGax glasses.  相似文献   

10.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

11.
The electrical properties of glasses in the Na2OP2O5, Ag2OP2O5 and (1?x)Na2OxAg2OP2O5 systems have been measured over a range of temperature and composition.The properties of the Na2OP2O5 and Ag2OP2O5 glasses have been compared within the phosphate system as well as with silicate glasses. The silver-containing glasses show higher conductivity and lower temperature coefficients when compared with the sodium-containing glasses. A maximum in the room temperature resistivity of the (1?x)Na2O?xAg2O?P2O5 system was found around the mole ratio of 0.16:0.84 Ag2O:Na2O, indicating a mixed-alkali effect. A similar effect was seen in the tan δ, but not in the Tg-against-composition plots. A linear relationship was noted for the tan δ-versus-log10 (resistivity) plot, as has been seen in other glass-forming systems.  相似文献   

12.
Vitreous compositions in the (0.55−x)Na2O:xSrO:0.45P2O5 (0?x?0.55) system were characterized by differential scanning calorimetry and 31P solid state NMR. High strontium containing glasses were found to be partly crystallized. In the pure glass samples a general increase in Tg and a decrease in isotropic chemical shift with increasing x were observed. Two distinct linear ranges were observed in plots of these parameters against composition, with a transition point at x≈0.20. This composition corresponds to the point at which all Na+ ions associated with charge balance of the terminal Q1 phosphate tetrahedra are substituted for Sr2+. In the mixed cation glasses, this suggests a non-random distribution of cations, with preferential location of Sr2+ ions near the chain ends. Crystalline models have been used to discuss trends in the variation of chemical shift anisotropy and propose possible coordination environments for the metal cations in the glasses.  相似文献   

13.
J.W. Lim  R.K. Brow 《Journal of Non》2011,357(14):2690-2694
The properties and structures of binary xSnO*(100 − x)P2O5 (50 ≤ x ≤ 70 mol%) glasses were evaluated. The glass transition temperatures (Tg), determined by differential thermal analysis (DTA), range from 246 to 264 °C, for glasses prepared under identical conditions. The refractive index (nD) increases from 1.701 to 1.833 as x increases from 50 to 70, and the Abbe number (νD) decreases from 29.1 to 20.4 over the same range. Infrared spectroscopy was used to estimate water contents in the glasses, which decreased with an increase in SnO content, from about 1570 ppm OH for x = 50 to about 50 ppm OH for x = 70, for glasses quenched from melts held at 1000 °C for 15 min. Residual water affects thermal properties, like Tg, and variations in water contents due to differences in melt processing explain the wide variety of glass properties reported in the literature. Raman spectroscopy indicates that progressively shorter phosphate chains are present in the structures of the binary Sn-phosphate glasses with increasing SnO contents.  相似文献   

14.
X.Y. Li  A.X. Lu  Zh.H. Xiao  Ch.G. Zuo 《Journal of Non》2008,354(31):3678-3684
Two series (A and B series) of oxynitride glasses were prepared by melting batches at 1580 °C for 3 h under local CO reducing atmosphere in a Si-Mo-heated resistance furnace. Nominal compositions of A and B series glasses in equivalent percent (eq.%) are (28−x)Y:xMg:48Si:24Al:83O:17N and (28−x)Y:xMg:56Si:16Al:83O:17N (x = 0, 7, 14, 21), respectively. The influences of Mg/Y and Al/Si ratios on the properties such as glass transition temperature (Tg), crystallization temperature (TC), knoop hardness (H), three-point bending strength (σ) and chemical durability in 20%HF were investigated. At the same time, the relationship between these properties and the structures of the glasses were discussed. At constant ratio Si-Al-O-N, Tg decreases nonlinearly but glass leaching ratio increases linearly with increasing Mg/Y ratio. However, H and σ increase first and then decrease as the Mg/Y ratio increases. When the Y/Mg/O/N ratio is constant, Tg decreases slightly but H and σ increase slightly as the Al/Si ratio increases.  相似文献   

15.
Thermal, structural, and electrical properties of semiconducting AsTeI (and AsTe) glasses have been examined as a function of concentration. Analytical techniques have been developed for quantitative chemical analysis of all three components. Differential scanning calorimetry data indicate a broad endothermic reaction, Tmin ∼ 145 °C, above the glass transition (Tg = 120 ± 8 °C) for iodine compositions of 0 to ∼ 20 at%. Above this reaction temperature the thermal data are composition dependent. For glasses with I ? 35 at %, Tg is much lower (65–70 °C) and the endothermic reaction is much sharper with a minimum at ∼ 133 °C. The wide variation in thermal properties with composition suggests that electrical effects associated with high temperatures (e.g. switching and memory phenomena) may also be composition dependent, as well as being dependent upon kinetics. Structural studies show that phase segregation above Tg is dependent upon kinetics as well as upon temperature. Thermal, structural, and electrical data give evidence that As2Te3 exists as a unit in the non-crystalline state. This structural unit, stable at high temperatures, is present in the molten material and is thought to be present as the supercooled liquid is quenched. The short-range order extends to long-range order upon devitrification and the first crystalline phase detected is monoclinic As2Te3. Apparently metastable under the conditions of formation, this phase converts to a previously unreported fcc phase upon further heat treatment. Similar crystalline structures are known to be associated with thermally- and electrically-induced memory phenomena in AsTeGe and AsTeI glasses. Density measurements at room temperature show that (1) there are no phase miscibility gaps in the glass substructure or different crystalline phases segregating as the I content is varied, and (2) there is a large change in molar volume with increasing I concentration, whereas the molar weight does not change significantly. Electrical conductivity, σ, data in the region around room temperature, show that the σ0 values, determined from σ = σ0eE/kt, range from 102 to 103 (Ω-cm)−1. A possible dependence of σ0 on I content may be due to changes in molar volume. The more homogeneous glasses appear to show breakpoints in the σ versus 1/T data; the corresponding changes in E are only 0.02–0.06 eV, with E = 0.04 eV being most frequently observed. For As50Te50−xIx glasses, σ at a given temperature increases as the iodine concentration is increased to about 5 at % and then decreases with further increase in I content. Correspondingly there is a minimum in the E versus I concentration data at I ∼ 5 at %. Results suggest that dependence of the σ breakpoints on glass homogeneity and the variation of E with I concentration may be due to trapping effects.  相似文献   

16.
K. Ramesh   《Journal of Non》2009,355(37-42):2045-2049
In Ge–As–Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5−x glasses over extended composition ranges. A distinct change in Tg is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (Tg) at x = 55 corresponding to the average coordination number (Zav) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Zav = 2.40 as predicted by the recent theories. The glass forming tendency (Kgl) and ΔT (=TcTg) is low for the glasses in the GFR I and high for the glasses in the GFR II.  相似文献   

17.
The effect of the variation in phosphate (P2O5) content on the properties of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1:0.87). The second series (II) was designed to ensure charge neutrality in the orthophosphate (), therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. Network connectivity’s of the glasses were calculated, and densities and thermal expansion coefficients predicted using the Appen and Doweidar models, respectively. Theoretical densities were measured using the Archimedes principle. Characteristic temperatures, namely the glass transition temperature, Tg, and crystallization temperatures, Tx, were obtained using differential analysis (DTA). Two crystallization exotherms were observed for both glass series (Txi and Txii). Both Tg and Tx decreased with P2O5 addition for both series. The working range of the glasses, Tx-Tg was shown to increase to a maximum at around 4 mol% P2O5 then decrease at higher P2O5 contents for both series. Thermal expansion coefficients were measured using dilatometry increasing with P2O5 addition and showed good agreement with the Appen values. Dilatometric softening points, Ts, were also measured, which increased with P2O5 addition. X-ray diffraction (XRD) was performed on the glasses to confirm their amorphous nature. The glass containing 9.25 mol% P2O5 from series I exhibited well-defined peaks on the XRD trace, indicating the presence of a crystalline phase.  相似文献   

18.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

19.
20.
《Journal of Non》2005,351(49-51):3730-3737
Ternary sodium–cobalt–phosphate glasses of the composition (50  x)Na2O–50P2O5xCoCl2 with x varying between 0 and 15 mol% prepared by melt quenching have been characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) techniques. Thermal (Tg, Tc) and electrical properties have been investigated. Infrared spectra reveal the formation of metaphosphate glasses (Q2 tetrahedral units) with symmetric bridging oxygen (P–O–P) and non-bridging oxygen (P–O). The spectra also indicate the formation of P–O–Co bonds in the metaphosphate glasses that replace P–O–Na+ bonds. The results of thermal studies correlate with these FT-IR findings and support the formation of P–O–Co bonds and an increased cross-link density with increasing CoCl2. This results in enhanced chemical durability and increased Tg and Tc of the glasses. The electrical conductivity parameters upon changing the composition have been correlated with structural changes in the glass matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号