首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H2-broadening coefficients have been measured for 29 lines of C2H2 at 173.2 K in the P and R branches of the ν5 fundamental band near 13.7 μ m, using a tunable diode-laser spectrometer. These lines were individually fitted with a Voigt and a Rautian profile in order to determine the collisional widths. The resulting broadening coefficients are compared with values calculated from a semiclassical theory performed by considering, in addition to electrostatic interactions, the atom-atom Lennard-Jones model. A satisfactory agreement is obtained but only for low and medium J values. By comparing broadening coefficients at 297 and 173.2 K from a simple power law, the temperature dependence of these broadenings has been determined both experimentally and theoretically.  相似文献   

2.
Infrared absolute line intensities of the ν6band of CH3F have been measured around 8.5 μm using a diode-laser spectrometer. These line strengths were obtained by the equivalent width method and, for 13 lines, by fitting a Rautian profile to the measured shape of the lines. From these results, we have deduced the vibrational band strength to beS0v= 9.66 ± 0.13 cm−2atm−1at 296 K and the first Herman–Wallis factors.  相似文献   

3.
The high-resolution (0.005 cm−1) Fourier transform infrared spectrum of PH3 is recorded and analyzed in the region of the fundamental stretching bands, ν1 and ν3. The ν24 and 2ν4 bands are taken into account also. Experimental transitions are assigned to the ν1, ν3, ν24, and 2ν4 bands with the maximum value of quantum number J equal to 15, 15, 13, and 15, respectively. a1-a2 splittings are observed and described up to the value of quantum number K equal to 10. The analysis of a1/a2 splittings is fulfilled with a Hamiltonian model which takes into account numerous resonance interactions among all the upper vibrational states.  相似文献   

4.
The lowest frequency parallel fundamental band ν3 of ethane is Raman active. A stimulated Raman spectrum of the Q branch for this band at a resolution of 0.0055 cm−1 has been measured by D. Bermejo et al. (1992, J. Chem. Phys.97, 7055). The torsion-rotation series in this band with σ=3, where σ=0, 1, 2, and 3 labels the torsional sublevels, is perturbed by over 1 cm−1. The lowest frequency-degenerate fundamental ν9 is infrared active. A high-resolution (0.0014 cm−1) Fourier transform spectrum of this band has been measured by N. Moazzen-Ahmadi et al. (1999, J. Chem. Phys.111, 9609). The observed torsional splittings for this band are substantially larger than expected from the observed barrier height. Because of a near-degeneracy of the upper level in the ν9 band with its interacting partner (v9=0, v4=3) a perturbation allowed band 3ν4 has also been observed. We have carried out a combined analysis of ν3, ν9, and 3ν4 together with the far-infrared torsional spectra in the ground vibrational state (gs). A fit to within the experimental error was achieved using 37 parameters. The large torsional splittings in the ν9 band are attributed to Coriolis-type interactions between the torsional stacks of gs and v9=1 whereas the large shift for the torsion-rotation series with σ=3 in the ν3 band is attributed to Fermi-type interactions between the torsional stacks of the gs and v3=1. The introduction of the Fermi-type interactions causes a considerable change in the leading terms in the torsional Hamiltonian for the gs. These changes are quantitatively explained.  相似文献   

5.
Collision effects on water vapor line profiles perturbed by nitrogen at room temperature have been studied by Fourier transform and tunable diode laser spectroscopy. Narrowing effect due to molecular confinement (Dicke effect) has been observed for P and Q branch lines of the ν2 band of H2O with Fourier transform spectrometer. Narrowing and broadening parameters have been determined using the soft and hard collision models. A more precise study on three R-branch lines with a frequency stabilized diode laser spectrometer allows to perform the comparison between the two collision models at low pressure and to analyze the different narrowing effects when the pressure increases taking into account the molecular confinement and the absorber speed dependent effects.  相似文献   

6.
The rotational spectrum of HDCO in the 41, 51, and 61 excited vibrational states has been investigated in Lille and Kiel using a sample enriched in deuterium. In Lille, the measurements were performed in the millimeter region (160-600 GHz). The spectra in Kiel were recorded using Fourier transform microwave spectrometers in the regions around 8-18 and 18-26 GHz, employing a rectangular waveguide of length 12 m and a circular waveguide of length 36 m, respectively. These results were combined with the 41, 51, and 61 infrared energy levels which were obtained from a previous analysis of FTS spectra of the ν4 (CHD bend), ν5 (CHD rocking), and ν6 bands (out of plane bend) recorded in the 10-μm region at Giessen (A. Perrin, J.-M. Flaud, M. Smirnov, and M. Lock, J. Mol. Spectrosc.203, 175-187 (2000)). The energy level calculation of the 41, 51, and 61 interacting states accounts for the usual A- and B-type Coriolis resonances in the 51⇔61 and 41⇔61 off diagonals blocks. In addition, since the energy levels of the 51 and 61 states are very strongly resonating, it proved necessary, as in our previous study, to use a {Jx, Jz} nonorthorhombic term in the 51 and 61v-diagonal blocks of the Hamiltonian matrix in order to reproduce properly the observed microwave transitions and infrared energy levels. Therefore, this work confirms that HDCO is a good example of the vibrational induced rotational axis switching (“VIRAS”) effect.  相似文献   

7.
The high-resolution Fourier transform infrared spectrum of trans-glyoxal in the gas phase has been recorded in the spectral regions 700-900 cm−1, 1200-1400 cm−1, and 1600-1800 cm−1 with a resolution ranging from 0.0020 to 0.0025 cm−1. The spectrum displays extensive rotational structures which are assigned to the three fundamental bands ν6 (Au, 801.5 cm−1), ν10 (Bu, 1732.1 cm−1), and ν11 (Bu, 1312.5 cm−1). A total of ca. 5000 absorption lines have been assigned to these three bands. A simultaneous ground state combination difference analysis of all three bands yields improved ground state spectroscopic constants for trans-glyoxal. Furthermore, a number of spectroscopic constants for the ν6 and ν11 levels have been determined for the first time.  相似文献   

8.
The ν6, ν17, and ν21 fundamental bands of dimethyl ether have been assigned and rotationally analyzed. The spectra used were recorded at 0.005 cm−1 spectral resolution with a Fourier-transform spectrometer coupled to a supersonic molecular beam leading to a rotational temperature of about 70 K. The ν6 and ν21 bands do not seem to be perturbed and the analysis of the rotational structure leads to band centers located at 933.906 6(9) and 1 103.951(1) cm−1, respectively, and to accurate rotational and centrifugal distortion constants. For the ν17 band at 2817.385(2) cm−1, only the P and R branches could be assigned.  相似文献   

9.
A high-resolution (up to 0.0018 cm−1 unapodized) room temperature mid-infrared (650 to 750 cm−1, 13.3 to 15.4 μm) absorption measurement of the ν3 vibrational band of trifluoromethane (fluoroform, CHF3, HFC-23) vapor was made with a Fourier transform spectrometer. A rovibrational analysis of over 1400 infrared transitions of the ν3 band has yielded rotational constants, including sextic centrifugal distortion constants. The results are compared with two previous analyses of microwave and infrared spectra. The line positions of the lower J parts of the ν36−ν6 and 2ν3−ν3 hot bands have been identified and constants obtained for the 2ν3 state. The central Q branch and a few unblended transitions of the ν3 band of 13CF3H have been identified and the band origin has been determined. The relative intensities of the ν3 band together with the 2ν3−ν3 hot band and ν3 band of 13CF3H have been calculated using the constants derived from this work.  相似文献   

10.
IR spectra of the solution of SF6 molecules in liquid NF3 at 84 K have been recorded. In a solvent transmission window of 1500–1750 cm−1, two wide absorption bands with pronounced peaks in the high-frequency part are observed. The profile of these bands is explained by the influence of the resonance dipole-dipole (RDD) interaction of the states of the simultaneous transition ν1(SF6) + ν3(NF3) and ν2(SF6) + ν3(NF3) with the states (ν1 + ν3) and (ν2 + ν3) of the SF6 molecules, respectively. The use of three isotopic modifications 32SF6, 33SF6, and 34SF6 has allowed us to vary the resonance detuning and thus to change the strength of the RDD interaction. With the liquid near the melting point being represented as a close-packed cubic crystal, the profile was calculated and its spectral characteristics were determined. The frequencies of the main peaks coincide with the experimental values accurate to the error.  相似文献   

11.
The hot bands in the ν1, ν2, and ν3 band systems of NC-CC-NC (3-isocyano-2-propynenitrile) have been investigated and transitions from nv9-levels with n up to 4 have been identified. Two weak bands have also been observed in the gas phase infrared spectrum at 2157 and 2410 cm−1, of which the latter is probably 2v4. A preliminary investigation of some analogous hot bands in the v4 band system of the related molecule NC-CC-CN (dicyanoacetylene) is also reported.  相似文献   

12.
The high-resolution infrared spectrum of allene has been observed in the 280-380 cm−1 region at a nominal resolution of 0.00125 cm−1 using the IR beamline at the MAX-I electron storage ring in Lund. The spectrum shows the bending fundamental of the ν11 band from which spectroscopic constants for the ν11 level have been obtained. The accompanying hot band component 2ν112111 has also been assigned and analyzed.  相似文献   

13.
The pressure-induced shift and broadening of H2S absorption lines in the ν2-band due to collisions between H2S molecules and quadrupole molecules, such as O2, H2, D2, N2, and CO2, were studied in the spectral region between 1050 and 1325 cm−1. The measurements were carried out using a pulse-driven diode laser spectrometer with two multipass Herriott cells. The data concerning the collisional broadening and shift coefficients, γ and δ, respectively, and their dependencies on the rotational quantum number J″ and the quadrupole moment Q of the molecular perturber are presented for 14 P-branch transitions (3≤J″≤8,0≤KaPrime;≤3, 2≤KcPrime;≤8), 7 Q-branch transitions (7≤JPrime;≤10, 1≤KaPrime;≤2, 6≤KcPrime;≤9), and 18 R-branch transitions (2≤JPrime;≤11, 0≤KaPrime;≤4, 0≤KcPrime;≤11). The broadening coefficients γ were determined with an accuracy to within 2% and shift coefficients δ were determined with an uncertainty of less than 10−3 cm−1/atm for the majority of lines and broadening gases.  相似文献   

14.
A list of line positions and, for the first time, of line intensities was generated for the ν1, ν2, and ν3 fundamental bands of the 12C16OF35Cl and 12C16OF37Cl isotopologs of carbonyl chlorofluoride, located at 5.3, 9.1, and 13.1 μm, respectively. In addition, for the most abundant isotopolog (12C16OF35Cl) this linelist includes also the contributions from the first two associated hot bands. The parameters included in this database were generated by combining the results of previous experimental analyses and ab initio calculations [Perrin A, Flaud JM, Bürger H, Pawelke G, Sander S, Willner H. First high resolution analysis of the six fundamental bands ν1, ν2, ν3, ν4, ν5 and ν6 of COF35Cl in the 340 to 2000 cm−1 region. J Mol Spectrosc 2001;209:122-232; Demaison J, Perrin A, Bürger H. Ab initio anharmonic force field and equilibrium structure of carbonyl chlorofluoride. J Mol Spectrosc 2003;221:47-56]. For the purpose of the present work, a partial re-investigation of the ν1 of COF35Cl was performed, together with the first identification of the ν2 band of COF37Cl.These parameters were generated in order to improve the quality of remote sensing of the atmosphere in the mid-IR. Analyses of atmospheric solar occultation spectra measured by the JPL MkIV interferometer show that the new linelist not only improves the quality of retrievals of COFCl, but also of several other gases whose absorptions overlap those of COFCl.  相似文献   

15.
Further analysis of the high-resolution (0.0015 cm−1) infrared spectrum of 32S16O3 has led to the assignment of more than 3100 hot band transitions from the ν2 and ν4 levels to the states 2ν2 (l=0), ν24 (l=±1), and 2ν4 (l=0,±2). These levels are strongly coupled via Fermi resonance and indirect Coriolis interactions to the ν1 levels, which are IR-inaccessible from the ground state. The unraveling of these interactions has allowed the solution of the unusual and complicated structure of the ν1 CARS spectrum. This has been accomplished by locating over 400 hot-band transitions to levels that contain at least 10% ν1 character. The complex CARS spectrum results from a large number of avoided energy-level crossings between these states. Accurate rovibrational constants are deduced for all the mixed states for the first time, leading to deperturbed values of 1064.924(11), 0.000 840 93(64), and 0.000 418 19(58) cm−1 for ν1, α1B, and α1C, respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. In addition, new values for some of the anharmonicity constants have been obtained. Highly accurate values for the equilibrium rotational constants Be and Ce are deduced, yielding independent, nearly identical values for the SO re bond length of 141.734 03(13) and 141.732 54(18) pm, respectively.  相似文献   

16.
The diode laser spectrum of the ν1 fundamental band of the short-lived molecule PNO has been detected with 59 R- and P-branch lines accurately measured. The lines were unambiguously assigned using the rotational and distortion constants for the ground and (100) vibrational levels found previously by microwave spectroscopy. The band origin was determined to be 860.301 228(31) cm−1 from a one parameter fit. The gas phase band origin is red-shifted by approximately 4 cm−1 from the matrix value.  相似文献   

17.
The temperature variations in collision-induced absorption (CIA) spectra of carbon dioxide in the region of the Fermi doublet are examined. New FTIR CIA spectra are recorded in the temperature range T=206-296 K. The spectra were subject to decomposition in order to separate true dimer contributions to the CIA profile from the base absorption caused by unbound pairs. The use of statistical physics theory allowed for quite nice reproduction of the observed temperature variations of the normalized dimer intensity.  相似文献   

18.
The ν2 fundamental bands of 79BrNO2 and 81BrNO2, located around 787 cm−1 (12.7 μm), were recorded using a high-resolution Fourier-transform infrared spectrometer. A total of nearly 5000 transitions with J≤80 and Ka≤30 were reproduced using a Watson-type A-reduced Hamiltonian with a root-mean-square deviation of better than 5×10−4 cm−1. Rotational and centrifugal distortion constants for the v2 states have been determined, as well as an improved set of ground state constants for both isotopomers. Due to their sharp Q branches falling into an atmospheric “window,” the detection of the ν2 bands might be an advantageous route for future attempts to detect atmospheric BrNO2.  相似文献   

19.
The high-resolution absorption spectrum of the D2O molecule was recorded with the Fourier-transform intracavity laser absorption spectrometer in the region 12 570-12 820 cm−1 where the band 4ν13 is located. Transitions belonging to the 4ν13 band, and the bands 3ν1+2ν3 and 3ν1+2ν23, of which the up states are strongly interacted with that of the 4ν13, were assigned in the recorded spectrum. Up state energy levels were fitted to derive effective spectroscopic parameters, which reproduce majority of the assigned transitions within the experimental accuracy.  相似文献   

20.
Water vapor infrared spectra have been recorded at room temperature in the range 4200-6250 cm−1 at resolutions (FWHM) between 0.0053 and 0.0080 cm−1. The use of a White-type multireflection cell made large pressure × pathlength products possible up to 31.27 mbar×288.5 m. The high signal-to-noise ratio allowed us to observe lines with intensities as small as 10−26 cm−1/molecule cm−2 at T=296 K. Among about 5100 recorded water lines, about half of which are reported for the first time, 2351 lines have been assigned to the second triad of H216O (bands ν12, ν23, and 3ν2). This has allowed the determination of line positions and corresponding upper rovibrational states with considerably improved accuracy. The assignments of certain highly excited states have been confirmed by the analysis of flame spectra and hot emission spectra. New values of effective Hamiltonian parameters for the upper states {(110), (030), (011)} have been determined. The generating function model was used in the data reduction to account for the anomalously strong centrifugal distortion of the rovibrational levels and resonance interactions. The RMS standard deviation of the least-squares fit of the assigned H2O data was 5×10−3 cm−1 for line positions and 7×10−3 cm−1 for energy levels up to Jmax=20 and Ka(max)=13. Particular attention was paid to water lines in the transparency window 4200-5000 cm−1, in which existing databases are not sufficient. In this region, 1395 lines of four isotopic species of water have been recorded and over 900 accurate line positions of nine bands of H216O (ν1, ν3, 2ν2, ν12, ν23, 3ν2, 4ν2−ν2, 2ν23−ν2, ν1+2ν2−ν2) are reported in this range. A comparison of laboratory spectra with long path atmospheric spectra (20 km slant path in the mountains) in this region shows that many lines missing from available spectroscopic compilations (or considerably shifted compared to observations) are important for a proper interpretation of atmospheric observations. A comparison of the observed data with the best available predictions from the molecular electronic potential energy surface is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号