首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stretch-bender model, developed originally to describe the effects of stretch-bend interactions and Renner-Teller coupling in symmetrical triatomic molecules, has been extended to incorporate the effects of spin-orbit interaction and of overall rotation. A comparison is made between the treatment of spin-orbit interaction and of overall rotation in our model and in the MORBID approach of P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker (J. Mol. Spectrosc.171, 31-57 (1995)).  相似文献   

2.
The extended stretch-bender Hamiltonian, incorporating spin-orbit coupling and overall rotation, has been used to calculate the spin-vibronic structure of the rovibronic energies in the region where the vibronic states of the excited Ã2A1 electronic state of NH2 interact with near-resonant high-lying levels of the X?2B1 state of NH2. A detailed comparison has been made with the experimental measurements which were made of these rovibronic states, the majority of which are due to Ramsay, Vervloet, and their collaborators. We have shown that, as in our study of the vibronic levels of the X?2B1 state below the barrier to linearity, in order to fit the variation of the effective vibronic spin-orbit coupling constant over the whole of this energy regime, the effective linear molecule spin-orbit coupling constant, ASO must be increased from the earlier value of 50 cm−1 of Ch. Jungen, K.-E. J. Hallin, and A. Merer (Mol. Phys.40, 65-94 (1980)) to 61.6 cm−1. The impact of Fermi resonance, in both the Ã2A1 and X?2B1 states, on the observed rovibronic structure has been assessed. The pattern of calculated spin-rovibronic levels, including the effects of spin uncoupling, is in good agreement with that measured experimentally.  相似文献   

3.
The extended stretch-bender Hamiltonian, incorporating spin-orbit coupling and overall rotation, has been used to calculate the spin-vibronic structure of the X?2B1 state of NH2 up to the barrier to linearity of this state. A detailed comparison has been made with experimental measurements of these rovibronic states, the majority of which are due to Vervloet and his collaborators. We have shown that, in order to fit the variation of the vibronic spin-orbit coupling constant over the whole of this energy regime, the effective linear molecule spin-orbit coupling constant, ASO, must be increased from the earlier value of 50 cm−1 of Ch. Jungen, K.-E. J. Hallin, and A. Merer (Mol. Phys.40, 65-94 (1980)) to 61.6 cm−1. Evidence has also been provided for the large quenching of the spin-orbit coupling as the molecule bends, reflected in the large valuee of gK=6 cm−1. The pattern of calculated spinrovibronic levels, including the effects of spin uncoupling, is in good agreement with that measured experimentally.  相似文献   

4.
The near-infrared emission spectrum of the Atilde;2A′→X?2A″ transition of DO2 has been studied by Fourier-transform spectrometry. The 000→000 band has been recorded at high spectral resolution. ΔKa=±1 subbands up to Ka′=12→Ka″=11 and Ka′=9→Ka″=10, comprising lines from rotational levels up to N′=34, have been observed. With about a factor of 5-10 lower intensity, ΔKa=0 subbands 0-0 to 6-6 were found, which are due to magnetic dipole transitions. Several local perturbations extending over 3-10 N″ values were observed. Two prominent perturbations in the F1 levels of the Ã2A′, 000, Ka″=11 and 12 states are attributed to ΔKa=0, ΔJ=0, ΔN=±1 interactions with the 211 level of the X?2A″ ground state. The rotational constants for HO2 and DO2 have been used to deduce the molecular geometry of HO2 at the zero point levels of the X?2A″ and Ã2A′ states.  相似文献   

5.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

6.
The 000-000 and 310 bands of the 775-nm electronic transition of YC22A1←X?2A1) have been studied at high resolution, using the laser-induced fluorescence from a supersonic jet expansion. Three types of experiment have been carried out. First, the complete rotational and hyperfine structures of the two bands were recorded. To measure the small asymmetry splittings in the K=2 levels of the X?2A1 state, portions of the b-type 310 band were then recorded in the presence of a weak static electric field. Finally, a number of pure rotational transitions between the K=0 levels of the ground state were recorded by pump/probe microwave optical double resonance. A few small rotational perturbations occur in the upper electronic state but, omitting the perturbed lines, the combined data sets could be modeled using an effective Hamiltonian operator appropriate for the rotation, electron spin, and hyperfine structure of a rigid asymmetric top molecule. The molecule is confirmed as being “T-shaped,” where the Y atom is bonded to the side of a C2 group; the rotational constants determined are for the Ã2A1, 31 level, A=1.76128, B=0.189949, C=0.170056 cm−1, and for the X?2A1, v=0 level, A=1.742731, B=0.201947, C=0.181285 cm−1. Allowing for electron orbital corrections to the rotational constants, the geometrical structures are found to be Ã2A1 state, r (Y-C)=2.2795 Å, r (C-C)=1.2630 Å, ∠C-Y-C=32.17°; X?2A1 state, r (Y-C)=2.1946 Å, r (C-C)=1.2697 Å, ∠C-Y-C=33.63°. A molecular orbital diagram is given for the states of YC2 and the interpretation of the electron spin and hyperfine parameters is discussed.  相似文献   

7.
We report the first high resolution rovibrational analysis of the infrared spectrum of pyrimidine (C4H4N2) based on measurements using our Fourier transform spectrometer, the Bruker IFS 125 HR Zürich Prototype (ZP) 2001. Measurements were conducted at room temperature in a White-type cell with effective optical path lengths between 3.2 and 9.6 m and with resolutions ranging from 0.0008 to 0.0018 cm−1 in the region between 600 and 1000 cm−1. The spectrum was analyzed in the ν4 (), ν10b () and ν6b regions of pyrimidine () using an effective Hamiltonian. A total of about 15 000 rovibrational transitions were assigned. The root mean square deviations of the fitted data are in the ranges drms = 0.00018-0.00024 cm−1, indicating an excellent agreement of experimental line data with the calculations. The results are discussed briefly in relation to possible extensions to spectra of DNA bases and to intramolecular vibrational redistribution at higher energy. The analysis of the ν10b and ν4 bands will also be useful in the interstellar search for pyrimidine in the infrared region.  相似文献   

8.
This paper reports the first assignment of rovibrational transitions of the 5ν4 and ν2+4ν4 band systems of 12CH4 in the 6287-6550 cm−1 region, which is usually referred to as part of the 1.58 μm methane transparency window. The analysis was based on two line lists previously obtained in Grenoble by cavity ring down spectroscopy at T=297 and 79 K completed by three long-path Fourier transform spectra recorded in Reims (at 290 K, L=1603 m, P=1-34 mbar). In order to determine the dipole transition moment parameters and quantify the intensity borrowing due to the resonance interactions, we had to include in the fit of the effective Hamiltonian model some lines of the stronger ν1+3ν4 and ν2+4ν4 bands. For this purpose, intensities of 179 additional lines were retrieved from FTS spectra above 6550 cm−1 though the analysis of these higher bands is not complete. About 1955 experimental line positions and 1462 line intensities were fitted with RMS standard deviations of 0.003 cm−1 and 13.1%, respectively. A line list of 8029 calculated and observed transitions which are considered as dominant was constructed for 12CH4 in the 6287-6550 cm−1 region. This is the first high-resolution analysis and modelling of 5-quanta band systems of 12CH4.  相似文献   

9.
High resolution infrared spectra of 121SbHD2 and 123SbHD2 have been studied in the region of ν1, the Sb-H stretching fundamental, from 1780 to 1990 cm−1. The 2ν1 stretching overtone band of 123SbHD2, located in the 3640-3790 cm−1 range, has also been investigated. The SbHD2 molecule is an asymmetric rotor of Cs symmetry with the asymmetry parameter κ = 0.61. The ν1 band is of hybrid type, formed by strong C-type and weak B-type transitions, and almost unperturbed. For 123SbHD2, 2092 transitions have been assigned: 70% of these belong to the C component, the other 30% are of B-type. The assigned transitions have been fitted using a Watson type S-reduced Hamiltonian in the IIIl representation, with a standard deviation of the fit σ = 0.45 × 10−3 cm−1. In order to determine the ground state parameters all possible ground state combination differences (GSCD) have been generated from the ν1 transitions. In total, 3942 GSCD up to J = 27,  = 25, and  = 20 have been fitted with σ = 0.52 × 10−3 cm−1. Only C-type transitions have been observed in the weak 2ν1 overtone band. The 556 assigned transitions have been fitted with σ = 2.6 × 10−3 cm−1 using the same Hamiltonian as for ν1. In the ν1 band of 121SbHD2 771 C-type transitions have been assigned, and the v1=1 spectroscopic constants obtained from a fit with σ = 0.70 × 10−3 cm−1. Using 618 GSCD the ground state spectroscopic constants of 121SbHD2 have been derived with σ = 1.0 × 10−3 cm−1. The molecular parameters for the ground and the v1=1 states of the two isotopologues agree well. The quartic theoretical ab initio force field of SbH3 has been used to predict all relevant spectroscopic parameters for 123SbHD2, 121SbHD2, 123SbH2D, and 121SbH2D. Relations between the harmonic frequencies and between the anharmonicity constants obtained in the expanded local mode theory, for the XH3 → XH2D/XHD2 isotopic substitution, have been compared with those obtained in the present study.  相似文献   

10.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

11.
Near-infrared emission spectra of the X22Π3/2 → X12Π1/2 fine structure transitions of PbH and PbD have been investigated by high-resolution Fourier-transform spectrometry. The fine structure splitting in the X2Πr ground state of 208PbH was found to be 6924.4926(4) cm−1. Accurate rotational constants for the v = 0 and 1 vibrational levels of the X2Πr states of 208PbH, 207PbH, 208PbD and 207PbD and hyperfine structure constants for the X12Π1/2 states of 207PbH (207PbD) have been derived.  相似文献   

12.
The ν1 fundamental band of the ClO2 radical has been studied by means of the 10.6-μm CO2 and N2O laser Stark spectroscopy. More than 250 and 150 Stark resonances were assigned for the 35ClO2 and 37ClO2 species, respectively, and were analyzed together with the recent microwave and laser-microwave double resonance results to give molecular constants including spin-rotation interaction constants. The ν1 band origins and electric dipole moments both in the ground and ν1 states were determined accurately
  相似文献   

13.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

14.
Previous studies of the parallel bands 2ν2 and 50 of CH3Br by the two first authors have been completed by the analysis of the weaker perpendicular band ν2 + ν5, centered near 2745 cm?1. It is well known that the v2 = 1 and v5 = 1 states of methylbromide are linked by an x-y-type Coriolis interaction. Therefore, in the 2500–2900-cm?1 range, the levels
(v2=2), (v52, l5=0), (v5=2, l5±2), (v5=v2=1, l=5±1)
are linked by a similar interaction. Least-squares and prediction programs have been written to treat this kind of problems and they have been satisfactorily applied to both isotopic species, CH379Br and CH381Br. A localized resonance in the K = 0 subband of ν2 + ν5 has been shown to be due to the 3ν3 + ν6 band. No evidence for a strong Fermi resonance between ν1 and 50 has been found.  相似文献   

15.
Pressure-induced line shift coefficients have been measured for more than 200 rovibrational lines of NH3 perturbed by O2 at room temperature (T = 295 K) in some branches of the ν2, 2ν2, and ν4 bands. These lines with J values ranging from 1 to 13 are located in the spectral range 800-1800 cm−1. Experiments were made with a high-resolution Fourier transform spectrometer. The treatment of vibration-rotation lines includes interference effects caused by the overlapping of lines. The O2 pressure-induced shift coefficients have been derived from the non-linear least-squares multi-pressure fitting technique. The results illustrate a vibrational dependence of line shifts with vibrational quantum number. Most of the measured shifts are negative in the ν4 band. They are positive for the ν2 and 2ν2 bands. The measured shift coefficients are compared with previous measurements and with those calculated from a semiclassical theory based upon the Robert-Bonamy formalism extended to the case of symmetric top molecule with inversion motion. The predictions are generally in satisfactory agreement with the experimental data. Analyses of measured and predicted results illustrate that these shifts mainly originate from the isotropic part of the intermolecular potential.  相似文献   

16.
For the first time the infrared spectrum of F2BOH in the gas phase has been observed. After optimizing the conditions for the synthesis we have been able to obtain high-resolution (2.4-3.3×10−3 cm−1) infrared spectra in the ν8, ν9, and ν4 regions with both natural and 11B monoisotopic material. Analyses of the ν8 (BF2 out-of-plane bending) and ν9 (OH torsion) fundamental bands located at 684.160 and 522.870 cm−1, respectively, for F211BOH are presented here. Existing J≤10 microwave transitions were combined with novel ground state combination differences with J≤55 formed from A-type (ν4) and C-type (ν8, ν9) bands to yield substantially improved and extended ground state parameters. Using a standard Watson-type Hamiltonian, 81 and 91 upper state parameters were obtained by fitting about 2000 lines each with σ(fit) ca. 3.5×10−4 cm−1. The 81 and 91 states both appear to be unperturbed, as indicated by the agreement of the ground and excited state centrifugal distortion constants.  相似文献   

17.
18.
The analysis of the absorption spectrum of 12CD3H, previously reported for the region 1200–1400 cm?1 concerned with the ν5 band, is now extended to cover the region 872–1213 cm?1 including the two bands ν3 and ν6. These are centered at 1004.553 and 1035.917 cm?1, respectively, and strongly coupled by a Coriolis interaction. A formulation taking this interaction into account rigorously was used; as a result, the energies for the upper states v3 = 1 and v6 = 1 are derived as eigenvalues of an effective Hamiltonian
(J. Mol. Spectrosc.79, 31–46 (1980)). The fit of the upper-state constants based on 1434 observed transitions including J′ and K′ values up to 22 leads to a set of 22 significant values which reproduce the observed wavenumbers with a standard deviation of 0.007 cm?1 close to the experimental uncertainties.  相似文献   

19.
The high resolution infrared spectrum of mono-isotopic F37Cl16O3 has been studied in the regions of ν1, ν2, ν4 and ν2 + ν5 bands, centered at 1060.20, 707.16, 1301.71 and 1292.15 cm−1, respectively. The ν1 and ν2 parallel bands are unperturbed so their analysis was straightforward and 3355 and 2433 transitions were assigned, respectively. The band origins, the rotational and centrifugal molecular constants in the v1 = 1 and v2 = 1 states have been determined, with standard deviation of the fits σ = 0.00019 and 0.00018 cm−1. The ν4 fundamental is affected by an anharmonic resonance with the ν2 + ν5 combination band. The kl > 0 sublevels cross at kl ? 27 because of the opposite values of and . The anharmonic resonance constant  cm−1 has been derived. The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances have been found to be effective in ν4, while in ν2 + ν5 only the Δl = Δk = ±2 one was active. A total of 5721 transitions have been assigned, 25% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants of F37Cl16O3 have been obtained. The standard deviation of the fit is 0.0006 cm−1, six times the estimated data precision. The equilibrium geometry of perchloryl fluoride has been determined from the Ae and Be constants of F35Cl16O3 and F37Cl16O3. Using the A0 and B0 constants of all the symmetric species the r0 geometry has also been derived.  相似文献   

20.
The results of millimeter and submillimeter wave rotational spectroscopy are used to simulate the complex structure of the 2ν9-ν9 and ν5-ν9 hot bands. The comparison data were obtained with a high-resolution Bruker FTIR. The combination of the quality of these data and the complexity of the spectra of these interacting states represents a stringent test for the simulation. It is shown that the agreement is very good and that this approach is generally advantageous. From this simulation, the ratios of the transition dipole moments for the 2ν9-ν9 and ν5-ν9 hot bands with respect to the ν9 fundamental band were found to be 1.38(11) and 0.67(20), respectively. Using these results, the calculated integrated band intensities for the hot bands at were determined to be and . These results were used to successfully simulate high-resolution stratospheric spectra obtained from a balloon flight of the FIRS-2 spectrometer. The more general problem of the rotation-vibration database and the optimal use of both microwave and infrared data to define it is discussed. It is concluded that it is best if the combination of data takes place at the level of the original spectra.  相似文献   

35ClO237ClO2
ν0945.592 357(60)939.602 909(66)cm?1
μ′1.788 39(13)1.788 46(15)D
μ″1.791 95(10)1.792 10(13)D
δμ?0.003 56(18)?0.003 64(26)D
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号