首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Copper phthalocyanine (CuPc) thin-film transistors (TFTs) have been fabricated using spin-coated polymeric gate insulators, including polymethyl methacrylate (PMMA) and a novel poly(methylmethacrylate-co-glycidylmethacrylate) (P(MMA-co-GMA)). These devices behaved fairly well and showed satisfactory p-type electrical characteristics. The transistor with P(MMA-co-GMA) gate insulator showed higher field-effect mobility, μFET = 1.22 × 10−2 cm2/V s, larger on/off current ratio, Ion/Ioff = 7 × 103 and lower threshold voltage, VT = −8 V, compared with the transistor with PMMA gate insulator (μFET = 5.89 × 10−3 cm2/V s, Ion/Ioff = 2 × 103 and VT = −15 V). The higher mobility of CuPc on P(MMA-co-GMA) was attributed to better ordering and enhanced crystallinity within the CuPc film and the better CuPc/P(MMA-co-GMA) interface, as observed by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. The correlation between the structural properties and the device performance of CuPc films grown on different polymeric gate insulators is discussed.  相似文献   

2.
This work assesses the relative effectiveness of four techniques to reduce the defect density in heteroepitaxial nonpolar a-plane GaN films grown on r-plane sapphire by metalorganic vapour phase epitaxy (MOVPE). The defect reduction techniques studied were: 3D–2D growth, SiNx interlayers, ScN interlayers and epitaxial lateral overgrowth (ELOG). Plan-view transmission electron microscopy (TEM) showed that the GaN layer grown in a 2D fashion had a dislocation and basal-plane stacking fault (BSF) density of (1.9±0.2)×1011 cm−2 and (1.1±0.9)×106 cm−1, respectively. The dislocation and BSF densities were reduced by all methods compared to this 2D-grown layer (used as a seed layer for the interlayer and ELOG methods). The greatest reduction was achieved in the (0 0 0 1) wing of the ELOG sample, where the dislocation density was <1×106 cm−2 and BSF density was (2.0±0.7)×104 cm−1. Of the in-situ techniques, SiNx interlayers were most effective: the interlayer with the highest surface coverage that was studied reduced the BSF density to (4.0±0.2)×105 cm−1 and the dislocation density was lowered by over two orders of magnitude to (3.5±0.2)×108 cm−2.  相似文献   

3.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   

4.
P. Bharathan 《Journal of Non》2011,357(18):3366-3372
We have experimentally measured the current-voltage and capacitance-voltage characteristics of Au/amorphous AsxSe1 − x (x ≤ 0.05)/Zr trilayer structures at temperatures from 4 to 295 K. The observed capacitance of structures with an amorphous AsxSe1 − x (a-AsxSe1 − x) thickness of ~ 0.4 to ~ 2.8 μm does not significantly change over the entire range of applied bias (− 5 V to 5 V), indicating that the a-AsxSe1 − x films are fully depleted and thus the structures are Mott barriers. The current-voltage (I-V) characteristics of the a-As0.03Se0.97 device at low (< 3000 V/cm) to moderate fields (3000 V/cm-10000 V/cm) follow the predictions of trap limited space charge conduction theory, as they exhibit Ohmic behavior at low fields and trap limited space charge current at moderate fields. According to the trap limited space charge current model of Lampert, the a-As0.03Se0.97 film has an effective hole mobility, Θμ (with Θ < 1), of ~ 5 × 10− 7 cm2/V-sec at 295 K. This value is similar to, but consistently lower than previously reported mobilities inferred from time of flight measurements. The current at high fields (> 104 V/cm) increases rapidly with applied field as a result of carrier emission from localized states and is consistent with transport by the Poole-Frenkel mechanism. A permanent transition to a high conductance state (~ 10− 3 S) is observed after exposure to very high electric fields (~ 4 × 105V/cm).  相似文献   

5.
Poly (N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH4SCN) based polymer films with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte has high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. From the admittance plot, the activation energy has been found to be low for 20 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε), dissipation factor (tan δ) and electric modulus (M) of the samples.  相似文献   

6.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

7.
High-quality zinc oxide (ZnO) films were successfully grown on ZnO-buffered a-plane sapphire (Al2O3 (1 1 2¯ 0)) substrates by controlling temperature for lateral growth using chemical bath deposition (CBD) at a low temperature of 60 °C. X-ray diffraction analysis and transmission electron microscopy micrographs showed that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. Rocking curves (ω-scans) of the (0 0 0 2) reflections showed a narrow peak with full width at half maximum value of 0.50° for the ZnO film. A reciprocal space map indicated that the lattice parameters of the ZnO film (a=0.3250 nm and c=0.5207 nm) were very close to those of the wurtzite-type ZnO. The ZnO film on the ZnO-buffered Al2O3 (1 1 2¯ 0) substrate exhibited n-type conduction, with a carrier concentration of 1.9×1019 cm−3 and high carrier mobility of 22.6 cm2 V−1 s−1.  相似文献   

8.
The electrical and optical properties of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy were systematically investigated. The photoluminescence spectra of Mg-doped a- and c-plane GaN films exhibit strong emissions related to deep donors when Mg doping concentrations are above 1×1020 cm−3 and 5×1019 cm−3, respectively. The electrical properties also indicate the existence of compensating donors because the hole concentration decreases at such high Mg doping concentrations. In addition, we estimated the ND/NA compensation ratio of a- and c-plane GaN by variable-temperature Hall effect measurement. The obtained results indicate that the compensation effect of the Mg-doped a-plane GaN films is lower than that of the Mg-doped c-plane GaN films.  相似文献   

9.
The development of polymeric systems with high ionic conductivity is one of the main objectives in Li rechargeable battery. In the present study, the different composition of PVA-LiCF3SO3 polymer electrolyte has been prepared by solution cast technique using DMSO as solvent. The FTIR study confirms the polymer-salt complex formation. The amorphous nature of the polymer has been confirmed by XRD analysis. DSC measurements show decrease in Tg with increasing salt concentration. The temperature dependent conductivity obeys Arrhenius relationship. The maximum conductivity has been observed in the order of 7 × 10− 4 S cm− 1 for 25 mol% of LiCF3SO3. The activation energy has been found to be 0.16 eV. The two peaks have been observed in the dielectric loss spectrum which shows two types of relaxation α and β.  相似文献   

10.
The defect states in bulk of i-layer and at p+/i interface have been studied by using dark reverse current-voltage (J-V) measurements. The dark reverse current as a function of voltage has been analyzed on the basis of thermal generation of the carriers from mid-gap states in i-layer. Based on its behavior the thermal generation mechanism has been divided into two types. Thermal generation at lower bias (<5 V) shows V1/2 behavior, whereas at higher bias follows an exponential dependence of voltage (>5 V). This was explained using a thermal generation zone at lower bias, which is a source of reverse currents, and its evolution towards p+/i interface with increasing voltage. The analytical result has shown that at lower reverse bias (V < 5 V) the defect states in the bulk of i-layer and at higher bias (∼ 25 V) the defect states at p+/i interface are contributing to the reverse currents. Reverse bias annealing (RBA) treatment which has been performed on these cells shows that a reduction of defect states more in the i-region near to the p+-layer and at p+/i interface as compared to the deep regions in bulk of i-layer. The calculated defect state density (DOS) is varying from its intrinsic value of 2.4 × 1017 cm−3 in the bulk of the i-layer up to 2.1 × 1019 cm−3 near and at p+/i interface. These values decrease to 7.1 × 1016 cm−3 and 2.7 × 1017 cm−3, respectively, in the samples annealed under reverse bias at 2 V. The bias dependent leakage current behavior has been modeled and implemented in simulation program with integrated circuit emphasis (SPICE) using simple circuit elements based on voltage controlled current sources (VCCS). Simulated and measured reverse leakage current characteristics are in reasonable agreement.  相似文献   

11.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

12.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

13.
Structural and optical properties of nonpolar a-plane ZnO films grown with different II/VI ratios on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy were investigated. Even by increasing the II/VI ratio across the stoichiometric flux condition a consistent surface morphology of striated stripes along the ZnO 〈0 0 0 1〉 direction without any pit formation was observed, which is contrary to polar c-plane ZnO films. Root mean square surface roughness, full width at half maximum values of X-ray rocking curves, defect densities, and photoluminescence were changed with the II/VI ratio. The sample grown with stoichiometric flux condition showed the lowest value of rms roughness, the smallest threading dislocation and stacking fault densities of ∼4.7×108 cm−2 and ∼9.5×104 cm−1, respectively, and the highest intensity of DoX peak. These results imply that the stoichiometric flux growth condition is suitable to obtain superior structural and optical properties compared to other flux conditions.  相似文献   

14.
The transmission of ArF laser pulses in virgin fused silica (type III) samples changes during N = 106 pulses at an incoming fluence Hin = 5 mJ cm−2 pulse−1. The related absorption is determined by the pulse energy absorption coefficient α(N, Hin) using a modified Beer’s law, yielding initial values αini around 0.005 cm−1, a maximum αmax ? 0.02 cm−1 at N = 103-104 and stationary values 0.0045 cm−1 ? αend ? 0.0094 cm−1 after N ≈ 6 × 105 pulses. The development α(N, Hin = const.) is simulated by a rate equation model assuming a pulse number dependent E′ center density E′(N). E′(N) is determined by a dynamic equilibrium between E′ center generation and annealing. Generation occurs photolytically from the precursors ODC II and unstable SiH structures upon single photon absorption and from strained SiO bonds via two-photon excitation. Annealing in the dark periods between the laser pulses is dominated by the reaction of E′ with H2 present in the SiO2 network. The development α(N, Hin = const.) is observed for the very first sample irradiation only (virgin state). The values αend are not accessible by simple spectrophotometer measurements.  相似文献   

15.
Electrical properties, deep traps spectra and structural performance were studied for m-GaN films grown on m-SiC substrates by standard metalorganic chemical vapor deposition (MOCVD) and by MOCVD with lateral overgrowth (ELO) or sidewall lateral overgrowth (SELO). Standard MOCVD m-GaN films with a very high dislocation density over 109 cm−2 are semi-insulating n-type with the Fermi level pinned near Ec−0.7 eV when grown at high V/III ratio. For lower V/III they become more highly conducting, with the electrical properties still dominated by a high density (∼1016 cm−3) of Ec−0.6 eV electron traps. Lateral overgrowth that reduces the dislocation density by several orders of magnitude results in a marked increase in the uncompensated shallow donor density (∼1015 cm−3) and a substantial decrease of the density of major electron traps at Ec−0.25 and Ec−0.6 eV (down to about 1014 cm−3). Possible explanations are briefly discussed.  相似文献   

16.
Fluorinated nanoporous silica (denoted as SiO2:F) thin films with low dielectric constant were prepared by a sol-gel method and spin coating technique. The leakage current densities of the SiO2:F thin films were 10−8 and 3 × 10−6 A/cm2 respectively for the as-deposited films and for those subjected to annealing at a temperature of 450 °C. These currents are more than one order of magnitude lower than those of the common SiO2 films. Photoluminescent results showed strong blue-light emission and a small blue shift in the SiO2:F films that were related to the increment of the porosity. The dielectric properties were also characterized and the k value of the annealed SiO2:F film was found to be about 1.67. The hole size in the films is small and the size distribution is uniform for the annealed SiO2:F samples due to the effects of fluorination. The underlying mechanism for fluorination is discussed in this paper.  相似文献   

17.
Nitride-based metal–semiconductor–metal ultraviolet (UV) photodetectors prepared on Si (1 1 1) substrate with stacked buffer layers were proposed and prepared. With 5 V applied bias, it was found that dark current of the fabricated device was only 7.95×10−12 A. With an applied bias of 10 V, it was found that peak responsivity was 0.06 A/W, corresponding to quantum efficiency of 21.2% while UV/visible rejection ratio was 244. With 5 V applied bias, it was found that noise equivalent power, NEP and detectivity, D*, of our detector were 1.70×10−13 W and 1.18×1013 cm Hz0.5 W−1, respectively.  相似文献   

18.
Koichi Awazu 《Journal of Non》2007,353(2):215-217
Amorphous SiO2 (a-SiO2) was formed by liquid-phase deposition (LPD) at room temperature. As a result of one shot of ArF excimer laser irradiation, LPD-formed a-SiO2 shows a threshold fluence for ablation of below than 200 mJ/cm2, which is much lower than the threshold fluence (∼1 J/cm2) of a-SiO2 formed by thermal oxidation of silicon. Raman scattering spectroscopy revealed that two sharp lines at 495 cm−1 and 606 cm−1, respectively, labeled D1 and D2, had disappeared, and the main band at 430 cm−1 was sharpened in LPD-formed a-SiO2. It is presumed that the fluorine broke the silica network, relaxing the Si-O-Si bond angle and dramatically reducing the threshold energy for ablation of a-SiO2.  相似文献   

19.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

20.
Carbon aerogel (CA) microspheres have been successfully synthesized by an inverse emulsion polymerization and characterized by scanning electron microscopy (SEM), N2 sorption isotherm and X-ray diffraction (XRD). The results show that the size and pore characteristics of carbon microsphere obviously depend on stirring speed and concentration of surfactant in the emulsion polymerization process. The resultant CA microspheres are amorphous carbon structure with the size ranging from about 2 to 50 μm by changing the stirring speed. CA microspheres with SBET of 414-603 m2 g− 1 and Vmeso of 0.028-0.432 cm3 g− 1 are synthesized using different SPAN80 concentrations. The results of cyclic voltammetry indicate that the CA microspheres prepared at a stirring speed of 480 rpm and at Vs/Vh = 0.01 have ideal supercapacitive behavior in 6 M KOH electrolyte, the maximum specific capacitance of the electrode reaches 180 F g− 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号