首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The T1←S0 absorption spectrum of 4H-pyran-4-thione (PT) was measured in a static cell at room temperature (550-620 nm) and in a seeded cold supersonic jet (580-600 nm) using the cavity ring-down (CRD) method. In the static cell absolute extinction coefficients were determined between 573 and 610 nm with an accuracy of ∼±5%. In this region 22 harmonic sequences and 18 hot bands were observed. The energetically lowest ground state vibration at 167.5 cm−1 was identified as the promoting mode in the static PT gas. The mode in the triplet state was found at 152.3 cm−1. The CRD absorption spectra of static PT gas and jet-cooled PT are compared with the phosphorescence excitation spectrum of isolated PT. The weak S1, 0←S0, 0 absorption was tentatively assigned to a transition at ∼17433 cm−1.  相似文献   

2.
Rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the S1 ← S0 transition of dibenzofuran have been observed using the technique of crossing a collimated molecular beam and the single-mode UV laser beam. 3291 rotational lines of the band and 3047 rotational lines of the band have been assigned. The band has been found to be a b-type transition, in which the transition moment is along the twofold symmetry axis of this molecule, and only the ΔKa = ± 1 transitions were observed. The excited state is identified to be the S11A1(ππ) state. In contrast with this, the band has been found to be an a-type transition in which the transition moment is along the long axis in plane. It indicates that the intensity of this vibronic band arises from vibronic coupling with the S21B2(ππ) state. We determined the accurate rotational constants and the molecule have been shown to be planar both in the ground and excited states.  相似文献   

3.
The S1-S0 absorption spectrum of 1-pyrazoline is rotationally sharp but vibrationally extremely irregular, and other techniques are necessary to aid its assignment. The relaxed fluorescence spectrum shows a very long progression in the NN twisting vibration, suggesting that the ring is twisted in S1 whereas, in S0, this part of the ring is planar but the CH2 group in position 4 is puckered. With a twisted ring in S1 it seems likely that the NN twisting and CH2(4) puckering modes in S0 should be combined and newly described as radial and hindered pseudorotational modes in S1. The vibronic transitions accompanying such an S1-S0 electronic transition are derived. Single vibronic level fluorescence spectra from many vibronic levels of S1 show progressions in both the NN twisting and CH2(4) puckering vibrations in S0, but only with Δv even. This strongly supports the suggestion that these two modes are heavily mixed in S1, and indicates that the fluorescing states are either above the barrier to pseudorotation or not far below it, so that there is appreciable tunnelling through the barrier. The progressions in the CH2(4) puckering vibration allow us to assign uniquely the puckering quantum number, in S0, of the band in which excitation took place. In addition, the spacings in these progressions further confirm the preferred potential function derived from the far-infrared spectrum and confirmed previously from the microwave spectrum.  相似文献   

4.
Jet-cooled fluorescence excitation and dispersed fluorescence spectra of 9-methylanthracene (MA), 9-cyanoanthracene (CA) and 9-cyano-10-methylanthracene (CMA) have been measured. The spectra of MA and CMA near the S0-S1 origin reveal a prominent torsional progression due to the hindered methyl group rotation and its torsional vibration against the aromatic ring frame. Additionally, the laser induced fluorescence LIF excitation spectrum of CMA shows the splitting of many vibrational modes.Observed positions and relative intensities of the methyl internal rotational bands were interpreted in terms of transitions calculated based on the quantum mechanical one-dimensional rotor. The low-frequency vibrational bands were interpreted also with the all electron quantum mechanical calculations within the RHF/6-31G(d,p), CIS/3-21G and CIS/6-31G(d,p) approximations. It is predicted that in the case of MA the eclipsed geometry (one C-H in the plane of the ring) is most stable in both S0 and S1 states. Conformation of the methyl group in CMA is suggested to change upon S1 ← S0 excitation (π/12 phase shift of the methyl group). The predicted energy barrier for methyl group rotation in the S0 state of CMA is considerably higher (72 cm−1) than that in the S1 state (22 cm−1). Following the present quantum mechanical calculations, the carbon atom of the methyl group belongs to the aromatic plane in the S0 ground state but it deviates from this plane in the S1 excited state. These in turn suggest that the calculated barrier for methyl group rotation in CMA has a 6-fold symmetry in the S0 ground state and roughly a 4-fold symmetry in the S1 state.  相似文献   

5.
A rotationally resolved ultrahigh-resolution fluorescence excitation spectrum of the S1 ← S0 transition of perylene has been observed using a collimated supersonic jet technique in conjunction with a single-mode UV laser. We assigned 1568 rotational lines of the band, and accurately determined the rotational constants. The obtained value of inertial defect was positive, accordingly, the perylene molecule is considered to be planar with D2h symmetry. We determined the geometrical structure in the S0 state by ab initio theoretical calculation at the RHF/6-311+G(d,p) level, which yielded rotational constant values approximately identical to those obtained experimentally. Zeeman broadening of each rotational line with the external magnetic field was negligibly small, and the mixing with the triplet state was shown to be very small. This evidence indicates that intersystem crossing (ISC) in the S11B2u state is very slow. The rate of internal conversion (IC) is also inferred to be small because the fluorescence quantum yield is high. The rotational constants of the S11B2u state were very similar to those of the S01Ag state. The slow internal conversion (IC) at the S1 zero-vibrational level is attributed to a small structural change upon electronic transition.  相似文献   

6.
Two-photon (TP)-induced transitions to the 1Lb state of 1,2,3-trimethylbenzene and 3-fluoro-1,2-dimethylbenzene were studied by resonant multiphoton ionization in a supersonic jet beam. In both molecules the TP S1S0 transition has very strong Franck-Condon components and components vibronically induced by ν14. Seven fundamental vibrations of the 1Lb state are detected in each molecule. A band, which appears near 1401 due to a Fermi resonance, is proposed to be 1021501. The 1Lb intensity of the heterosubstituted compound is in agreement with the TP orientation intensity rules.  相似文献   

7.
In the present study, the laser absorption method was used to measure the rates of quenching of the metastable state He(21S0), the lower laser level in the self-terminating helium laser, with H2O, NH3, N2O, and CO2 molecules. For the above molecules, the quenching rate constants were found to equal (1.2 ± 0.3)10− 9, (0.8 ± 0.2)10− 9, (1.9 ± 0.2)10− 9 and (2.2 ± 0.4)10− 9 cm3 s− 1. Under excitation with long (up to 750 ns) open discharge generated electron beam pulses, lasing on the transition He (21P10-21S0) was examined. In the mixtures He-H2O and He-NH3, lasing durations almost equal to the pump-pulse duration were obtained. In the mixtures of He with CO2 and N2O, no lasing prolonged in comparison with pure helium was found. The data obtained were explained considering two quenching mechanisms for the state He(21S0): in collisions with molecules and in collisions with plasma electrons having low energies due to fast relaxation of the vibrational states of H2O and NH3 molecules.  相似文献   

8.
The rotational spectra of the deuterium cyanide isotopic species DCN, D13CN, DC15N, and D13C15N were recorded in the vibrational ground and first excited bending state (v2=1) up to 2 THz. The R-branch transitions from J=3←2 to J=13←12 were measured with sub-Doppler resolution. These very high resolution (∼70 kHz) and precise (±3-10 kHz) saturation dip measurements allowed for resolving the underlying hyperfine structure due to the 14N nucleus in DCN and D13CN for transitions as high as J=10←9. Additional high JR-branch (J=25←24 to J=28←27) transitions around 2 THz and direct l-type (ΔJ=0, J=19 to J=25) transitions from 66 to 118 GHz were recorded in Doppler-limited resolution. For the ground state of D13C15N, the J=1←0 transition was measured for the first time. The transition frequency accuracies for the other deuterated species were significantly improved. These new experimental data, together with the available infrared rovibrational data and previously measured direct l-type transitions, were subjected to a global least squares analysis for each isotopomer. This yielded precise sets of molecular constants for the ground and first excited vibrational states, including the nuclear quadrupole and magnetic spin-rotation coupling constants of the 14N nucleus for DCN and D13CN. The hyperfine structure due to the D, 13C, and 15N nuclei have not been resolved, but led to a broadening of the observed saturation dips.  相似文献   

9.
In this paper, the excitation spectrum and luminescence at 14 569, 17 225, 18 829 and 14 659 cm-1 for Fe3+ ion at the K+ site of KTaO3 crystals are assigned, respectively, to the 6A1(S)→4T1(G), 4T2(G), 4E1(G)[4A1(G)] and 4T1(G)→6A1(S) transitions rather than to the 6A1(S)→4T1(G), 2T2(I), 4T2(G) and 4T1(G)→6A1(S) transitions given in a previous paper [Bryknar et al., Radiat. Eff. Def. Solids 149(1999)51]. On the basis of this assignment, the reasonable optical spectrum parameters (in particular, the cubic field parameter Dq≈−640 cm−1) are obtained. The validity of this assignment is discussed.  相似文献   

10.
Large effects of vibronic coupling upon vibrational levels of the ground (1A′) and first excited (1A″) singlet electronic states of cis acrolein (2-propenal) are successfully modeled. Some implications for CH2CHCHO spectroscopy and photophysics are discussed briefly.  相似文献   

11.
Emission spectra of the b1Σ+(b0+) → X3Σ(X10+,X21) and a1Δ(a2) → X21 transitions of AsBr have been measured in the near-infrared spectral region with a Fourier-transform spectrometer. The arsenic bromide radicals were generated in fast-flow systems by reaction of arsenic vapor (Asx) with bromine and were excited by microwave-discharged oxygen. The most prominent features in the spectrum are the Δv = +1,0,−1, and −2 band sequences of the b1Σ+(b0+) → X3Σ(X10+) transition in the range 11 700-12 700 cm−1. With lower intensities, the Δv = 0 and −1 sequences of the b1Σ+(b0+) → X3Σ(X21) sub-system show up in the same range. Further to the red, between 6000 and 6700 cm−1, the Δv = 0, +1, and −1 sequences of the hitherto unknown a1Δ(a2) → X21 transition are observed. Analyses of medium- and high-resolution spectra have yielded improved molecular constants for the X10+, X21, and b0+ states and first values of the electronic energy and the vibrational constants of the a2 state.  相似文献   

12.
We report high resolution infrared absorption studies of rare gas (Rg) atom doped solid parahydrogen in the hydrogen S1(0) region around 4486 cm−1. At low Rg atom concentrations (∼0.1%), satellite transitions appear in the S1(0) region due to rovibrational excitation of parahydrogen molecules with one nearest-neighbor Rg atom. The Ne satellite feature differs qualitatively from the Ar, Kr, and Xe satellite features for reasons described within. The frequency of the S1(0) satellite features linearly shift to lower energy as the polarizability of the Rg atom increases while the absorption coefficients increase with the square of the Rg atom polarizability. Rotational calculations are performed for H2 with a nearest-neighbor Rg atom assuming a rigid hexagonal close-packed lattice structure. The calculated fine structure of the S1(0) satellite features agree qualitatively with lifting of the 2J+1 degeneracy of the v = 1, J = 2 upper state caused by the anisotropy in the Rg-H2 intermolecular potential. The discrepancy between the calculated and measured Rg atom S1(0) satellite features may signal partial delocalization of the J = 2 roton onto neighboring parahydrogen molecules.  相似文献   

13.
More than 250 rotationally resolved vibrational bands of the A2B2-X2A1 electronic transition of 15NO2 have been observed in the 14 300-18 000 cm−1 range. The bands have been recorded in a recently constructed setup designed for high resolution spectroscopy of jet cooled molecules by combining time gated fluorescence spectroscopy and molecular beam techniques. The majority of the observed bands has been rotationally assigned and can be identified as transitions starting from the vibrational ground state or from vibrationally excited (hot band) states. An exceptionally strong band is located at 14 851 cm−1 and studied in more detail as a typical benchmark transition to monitor 15NO2 in atmospheric remote sensing experiments. Standard rotational fit routines provide band origins, rotational and spin rotation constants. A subset of 177 vibronic levels of 2B2 vibronic symmetry has been analyzed in the energy range between 14 300 and 17 250 cm−1, in terms of integrated density and using Next Neighbor Distribution. It is found that the overall statistical properties and polyad structure of 15NO2 are comparable to those of 14NO2 but that the internal structures of the polyads are completely different. This is a direct consequence of the X2A1-A2B2 vibronic mixing.  相似文献   

14.
The high-resolution spectrum of the ν1=5 stretching overtone of gaseous H70GeD3 has been recorded by an intracavity laser absorption spectrometer based on a vertical external cavity surface emitting laser (VECSEL). The rotational structure of the excited state at 9874.605 cm−1 was found weakly perturbed by unidentified interaction with dark states. Finally, of the 313 lines rotationally assigned, 239 lines were found unperturbed and could be reproduced with a root-mean-square (rms) deviation of 0.012 cm−1. The retrieved set of rotational parameters agrees with the values extrapolated from the previously studied ν1=6-8 stretching overtones. High-resolution FTIR spectra of the ν1 and 2ν1 bands have also been recorded and analyzed. The ν1=1 level, (νeff=2114.15 cm−1) is in anharmonic interaction with a further A1 symmetry level (νeff=2102.39 cm−1). The potential coupling term could be estimated (Wanh=5.6(3) cm−1) and the most probable assignment of the perturber is ν2+ν3. Moreover both levels are rotationally perturbed in an irregular fashion. Only a coarse analysis up to J=6 could be performed. The 2ν1 band reveals irregular perturbations of medium intensity by unknown dark states for almost all K values. Nevertheless the obtained leading rovibrational parameters of the 2ν1 band for J?6 are in agreement with those of the ν1=5-8 states.  相似文献   

15.
New fluorescence excitation and dispersed SVL fluorescence spectra of s-tetrazine vapor in supersonic expansions of helium and argon are reported. A forbidden in-plane-polarized component of the A?1B3u-X?1Ag transition is discovered at (0, 0) + 578 cm?1 with a type-B band contour in rotationally resolved excitation spectra obtained with a single-frequency cw ring dye laser. Linewidth measurements of single rovibronic transitions provide data to calculate lifetimes of low-lying S1 vibronic states of the isolated molecule. Depending on the vibrational mode involved, the lifetime varies from 0.05 to greater than 1 nsec. The number of cold-band assignments in the absorption spectrum of s-tetrazine vapor now confirmed by analysis of SVL fluorescence spectra increases from three to ten.  相似文献   

16.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

17.
The low-pressure fluorescence spectrum of NO2 excited by the narrow (0.5 GHz) HeCd laser transition at 441.6 nm is found to be quite complex, indicating a rather high density of transitions to final states at this energy. Seven fluorescing states exhibiting perpendicular selection rules have been assigned to 2B1 (K > 0) vibronic states of NO2. From the presence of final states with v3″ = 2, a considerable amount of 2A2 electronic state character is attributed to at least some of these states.  相似文献   

18.
The vibrotational absorption spectra of the AX electronic transition of I79/81Br were measured in the 11 330- to 13 220-cm−1 region using a Ti:sapphire ring laser. The P-, Q-, and R-branch lines of the rotational states from J=10 to 100 belonging to the v′←v″=(3∼20)′,←(1∼6)″ bands were assigned. The P- and R-branch lines, unlike the Q-branch lines, were split into the doublet by the nuclear quadrupole coupling effect of the I atom. The quadrupole coupling constants of eQq0 and eQq2 in the A state were estimated to be −0.030±0.018 and −0.062±0.018 cm−1, respectively, by using the first order perturbation theory. The unperturbed line positions for the rotational lines higher than J=20 were determined. The Dunham coefficients of the X state were determined by the least squares fitting method using the pseudo vibrotational transition wavenumbers obtained by calculating the combination differences between the electronic spectral lines assigned and the far infrared vibrotational lines reported by Nelander et al. (7). The spectroscopic constants of Tv′, Bv′, Dv′, and Hv′ of the A state were determined suitable for the vibrational states from v′=3 to 20 by using a least squares fitting procedure.  相似文献   

19.
The absorption and MCD spectra of the 3A2g1Eg transition of CdI2:Ni2+ at about 12,500 cm?1 have been measured. The unusual vibronic fine structure is explained by the coupling of the phonons of the CdI2 lattice to the electronic states of Ni2+. The dispersion curves for the acoustical and optical branches in the Brillouin Zone of CdI2 are deduced.  相似文献   

20.
The high-resolution Fourier transform absorption spectrum of an isotopic sample of nitrogen dioxide, 15N16O2, was recorded in the 3.4 μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242 (1991) 367-377] a new analysis of the ν1 + ν3 band located at 2858.7077 cm−1 has been performed. This new assignment concerns (1 0 1) energy levels involving rotational quantum numbers up to Ka = 10 and N = 54. Using a theoretical model which accounts for both the electron spin-rotation resonances within each vibrational state and the Coriolis interactions between the (1 2 0) and (1 0 1) vibrational states, the spin-rotation energy levels of the (1 0 1) vibrational state could be reproduced within their experimental uncertainty. In this way, the precise vibrational energy, rotational, spin-rotation, and coupling constants were achieved for the {(1 2 0), (1 0 1)} interacting states of 15N16O2. Using these parameters and the transition moment operator which was obtained for the main isotopic species, 14N16O2, a comprehensive list of the line positions and intensities was generated for the ν1 + ν3 band of 15N16O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号