首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure rotational spectrum of the ground electronic state of platinum monosilicide has been measured for nine isotopomers. For the most abundant isotopomer, 194Pt28Si, the J=1-0 and the J=2-1 transitions were recorded up to the fourth vibrationally excited state. The data set obtained enabled a multi-isotopomer fit to a Dunham-type expression and the constants Y01, Y02, Y11, Y21, and Y31 were determined. In the process of fitting the data it was necessary to include Born-Oppenheimer breakdown correction terms and the values and significance of these terms are discussed. Strong evidence is presented indicating within the rotational spectrum the presence of field shift effects due to the finite size of the Pt nucleus. The nuclear spin-rotation constant, CI(195Pt) is found to be 30.98(157) kHz in the ground vibrational state. Hyperfine structure arising from the 29Si nucleus was not observed. The measurement of Stark shifts in the rotational spectrum of PtSi has enabled the determination of the dipole moments for the 194Pt28Si and 196Pt28Si isotopomers.  相似文献   

2.
A Fourier transform microwave spectrometer has been used to make high resolution measurements on the J = 1-0 rotational transition for 11 isotopomers of SnO. For the most abundant isotopomer the transition was observed in the v = 0, 1, 2, and 3 states. Magnetic hyperfine structure was observed in the transitions for 115Sn16O, 117Sn16O and 119Sn16O. The nuclear spin-rotation constant CI(Sn) has been determined for these isotopomers for the first time and these constants have been related to nmr shielding parameters. A multi-isotopomer analysis, including data from the 120Sn17O and 120Sn18O isotopomers, has been performed on the data. Born-Oppenheimer breakdown parameters were required in the fit and these parameters have been compared to those for the other Sn-chalcogenides.  相似文献   

3.
Two rotational transitions of the first six vibrational states of three isotopomers of zinc monosulfide, 64Zn32S, 66Zn32S, and 68Zn32S, have been observed in cavity Fourier transform microwave (FTMW) spectroscopy. In addition, the hyperfine splitting of the 67Zn32S due to the nuclear quadrupole coupling constant of the I = 5/2 67Zn nucleus was observed for two rotational transitions of v = 0. The zinc sulfide was produced by laser ablation of a zinc rod with the resulting zinc plasma reacting with 0.6% OCS in argon in a pulsed jet originating upstream of the ablation plasma. A Dunham expansion of the rotational constant is performed resulting in the determination of Be, αe, γe, δe, and εe (Y01, −Y11, Y21, Y31, and Y41) for ZnS. There is no evidence of Born–Oppenheimer breakdown in the mass-scaling of these parameters to within our experimental accuracy. χaa(67Zn) of 67Zn32S is also determined.  相似文献   

4.
The ν3 bands of HOBr around 16 μm have been recorded using high-resolution Fourier-transform absorption spectroscopy. More than 800 lines of the two main isotopomers, HO79Br and HO81Br, with Ka values up to 4 and J values up to 41 have been assigned. Rotational and centrifugal distortion constants of the v3=1 states were determined from a non-linear least-squares fit using an A-reduced Watson-type Hamiltonian. The results improve Hamiltonian constants determined previously from microwave spectroscopy, and accurate vibrational band centers are determined for the first time: 620.22855 (25) and 618.90606 (25) cm−1 for the HO79Br and HO81Br isotopomers, respectively.  相似文献   

5.
The rotational spectra of the isotopomers C35Cl37Cl and C37Cl2 of dichloromethylene in the ground vibronic state were recorded in the range 10-33 GHz using a molecular beam Fourier transform microwave spectrometer. CCl2 was generated by flash pyrolysis using different precursors. The observed spectra were analyzed to yield rotational and centrifugal distortion constants, as well as the complete Cl nuclear quadrupole coupling tensors and the spin-rotation interaction constants from the hyperfine structure of the rotational lines. With inclusion of data from previous work on the most abundant species C35Cl2 [N. Hansen, H. Mäder, F. Temps, Phys. Chem. Chem. Phys. (3) (2001) 50-55.] a refined r0 structure was determined. The spin-rotation interaction constants of all three isotopomers were used to derive 35Cl and 37Cl principal inertial axis nuclear magnetic shielding components which have not yet been determined by NMR spectroscopy.  相似文献   

6.
Pure rotational spectra have been measured for all the major isotopomers of the lanthanum monohalides, LaF, LaCl, LaBr, and LaI, in their ground and (except for ) excited vibrational states. The spectra were observed with a cavity pulsed jet Fourier transform microwave spectrometer in the frequency range 5-24 GHz. The molecules were prepared by laser ablation of La metal and allowing the resulting plasma to react with SF6, Cl2, Br2, or CH3I precursor in an Ar carrier gas of the pulsed jet. For LaBr this is the first reported spectrum of any kind. Rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants, and nuclear spin-rotation constants have been determined for all the molecules. Accurate equilibrium (re) internuclear distances have given an indication of where the Born-Oppenheimer approximation is beginning to fail. From the centrifugal distortion constants and vibration-rotation (αe) constants good estimates of the harmonic vibration frequencies and bond dissociation energies have been obtained. The halogen nuclear quadrupole coupling constants indicate the molecules to be highly ionic.  相似文献   

7.
We report on linewidth measurements on the J=24K,11−23K,10 and J=38K,33−37K,32 millimeter wave transitions in the ground vibrational state of nitric acid, located near 470.23 and 544.36 GHz, respectively. Experiments were performed with N2 and O2 as perturber molecules, in the 240-350 K temperature range by using a video-type spectrometer. The foreign-gas broadening parameters and their temperature dependence coefficients were determined using the Voigt profile, no narrowing effect being observed. In order to check the reliability of reported values, we carried out measurements on the J=14K,12−13K,11 transition located near 206.6 GHz, previously observed in two other laboratories. For this last line all the reported values are consistent themselves within one claimed standard deviation.  相似文献   

8.
The J = 101-000 and 202-101 transitions of nine isotopomers of chlorogermylene, H74Ge35Cl, H74Ge37Cl, H72Ge35Cl, H72Ge37Cl, H70Ge35Cl, H70Ge37Cl, H76Ge35Cl, H76Ge37Cl, and H73Ge35Cl are measured at 8-9 and 16-18 GHz. The effective rotational constants, the nuclear quadrupole coupling constants of 35Cl, 37Cl, and 73Ge, and the nuclear spin-rotation coupling constants of 35Cl and 37Cl are determined.  相似文献   

9.
Rotational spectra of the Kr-NH3 van der Waals complex were measured in the frequency range between 4 and 24 GHz using a pulsed jet cavity Fourier transform microwave spectrometer. The isotopomers studied included those of NH3, 15NH3, ND3, NHD2, and NH2D with the five most abundant isotopes of Kr. Tunnelling splittings due to the inversion of the ammonia subunit within the ground state of the complex were observed for all three deuterium containing isotopomers. In the NH3 and 15NH3 isotopomers, one of the tunnelling states has a spin statistical weight of zero and the splitting can therefore not be measured in these species. Nuclear quadrupole hyperfine structure arising from the 14N and 83Kr nuclei was measured and the corresponding nuclear quadrupole coupling constants were determined. These were used to estimate structural parameters and derive information about the intermolecular dynamics. Smaller nuclear quadrupole splittings arising from the deuterium nuclei were observed but could not be resolved. The ground state spectroscopic constants were compared with experimental and theoretical data previously reported for Ar-NH3 and its isotopomers. For the Kr-ND3 isotopomers, additional transitions were observed and assigned to the two inversion components of an excited internal rotor state. A fit of the spectroscopic constants revealed the presence of a Coriolis perturbation, similar to that reported for this state in Ar-ND3 and Ar-NH3.  相似文献   

10.
Using a tunable diode laser spectrometer, the infrared absorption spectra of four isotopic species of carbon monosulfide have been observed in the positive column of a dc discharge of CS2 and Ar. The wavenumbers of 115 vibration-rotation transitions between 1180.5 and 1266.1 cm?1 have been measured. These lines were assigned to the 1-0, 2-1, 3-2, and 4-3 bands of 12C32S, the 1-0 and 2-1 bands of 12C34S and 13C32S, and the 1-0 band of 12C33S. These new data have been combined with the previous infrared and microwave results to determine Dunham coefficients (Yij), the Dunham potential expansion constants (a0,a1,a2,a3, and a4), and the classical turning points by the RKR method.  相似文献   

11.
The ground state rotational spectrum of germyl fluoride was measured up to 1273 GHz (J ≤ 63). The rotational constants and quartic and sextic centrifugal distortion constants have been determined accurately for five isotopic species in natural abundance (70/72/73/74/76Ge). The high accuracy of the rotational constants of these five isotopomers allowed us to study the mass dependence of the substitution coordinate of Ge. Equilibrium rotational constants of 74GeH3F were deduced with the help of the axial rotational constant and the rotation-vibration interaction constants determined by high resolution infrared spectroscopy. The r0, r,I, and re structures of GeH3F were determined.  相似文献   

12.
This sixth of a series of publications on the high-resolution rotation-vibration spectra of sulfur trioxide reports the results of a systematic study of the ν3 and 2ν3 infrared bands of the four symmetric top isotopomers 32S16O3, 32S18O3, 34S16O3, and 34S18O3. An internal coupling between the l=0(A1) and l=2(E) levels of the 2ν3 states was observed. This small perturbation results in a level crossing between |kl|=9 and 12, in consequence of which the band origins of the A1,l=0 “ghost” states could be determined to a high degree of accuracy. Ground and upper state rotational constants as well as vibrational anharmonicity constants are reported. The constants for the center-of-mass substituted species 32S16O3 and 34S16O3 vary only slightly, as do the constants for the 32S18O3, 34S18O3 pair. The S-O bond lengths for the vibrational ground states of the species 32S16O3, 34S16O3, 32S18O3, and 34S18O3 are, respectively, 141.981 99(1), 141.979 38(6), 141.972 78(8), and 141.969 93(8) pm, where the uncertainties, given in parentheses, are two standard deviations and refer to the last digits of the associated quantity.  相似文献   

13.
The complex hyperfine structures in the J = 1 ← 0, and J = 2 ← 1 ground state rotational transitions of 35Cl3CH and 35Cl237ClCH were resolved and measured at conditions of supersonic expansion. Accurate spectroscopic constants for the two isotopomers have been derived from global fits of the hyperfine structure together with hyperfine-free high-J millimetre wave data. The complete inertial and principal quadrupole tensors of the chlorine nuclei have been determined, and the symmetric top treatment for 35Cl3CH and the asymmetric top treatment for 35Cl237ClCH yield identical results for the principal tensor components of the 35Cl nucleus. The availability of precise experimental splitting constants for many molecules allows benchmarking of ab initio field gradient calculations, and it is found that for the chlorine nucleus optimum predictive performance for molecules of moderate size is obtained at the B3LYP/aug-cc-pVDZ level by using a scaling factor of 1.0619(23).  相似文献   

14.
Rotational spectra of 15 isotopomers of the Ne-H2S van der Waals complex were measured in the frequency range 4–22 GHz using a pulsed molecular beam Fourier transform spectrometer. Two K = 0 progressions were observed for each of the symmetric isotopomers (with H2S or D2S). This doubling is attributed to an internal rotation motion of the H2S subunit within the complex. These two states can be correlated with the 000 and 101 rotational states of free H2S and D2S. By contrast, symmetry constraints no longer apply to isotopomers with DHS. The excited internal rotor state is no longer metastable, and only one K = 0 progression could be observed. The rotational constants obtained were compared with those of Ar-H2S and Ar—H2O. The ground state rotational constant remained almost constant upon substitution of H with D, showing an unusual isotope effect, similarly to a previous observation in Ar-H2S (GUTOWSKY, H. S., EMILSSON, T., and ARUNAN, E., 1997, J. chem. Phys., 106, 5309). This behaviour is in agreement with the ab initio study by OLIVEIRA, G. D., and DYKSTRA, C. E., 1999, J. chem. Phys., 110, 289. An approximate substitution analysis was carried out to deduce structural information from the ground state rotational constants. Nuclear quadrupole hyperfine structures were observed and resolved or partially resolved for isotopomers containing 33S and D, respectively, and the corresponding nuclear quadrupole coupling constants were determined. These were used to derive information about the internal dynamics of the dimer. Different sensitivities of the quadrupole coupling constants of D and 33S to the extent of out-of-plane motion were revealed.  相似文献   

15.
Electromagnetic transitions within nuclei reflect specific aspects of nuclear structure. This is particularly true for metastable excited states, or isomers, like 178Hfm2 (T1/2=31T1/2=31 years, excitation energy 2446 keV). The interaction of external radiation with isomers can be used to study atomic and nuclear properties and, perhaps, to induce a release of the stored energy. Some experiments indicated that low-energy photons near the L3 edge (9.561 keV) of hafnium could cause this to occur for 178Hfm2, but the lack of a viable physical model and null experiments by other groups have left these claims in doubt. The present work describes a new experiment to examine this process by closely duplicating the irradiation conditions in positive studies, but using a more advanced multi-detector γ array. No support for an induced depletion of 178Hfm2 by low-energy photons was obtained, with an upper limit for the integral cross section that is eight orders-of-magnitude below the reported value.  相似文献   

16.
The experimentally determined energies and rotational constants of the vibrational levels v = 0–20 of the Ion-Pair states Ω = 0+, Ω = 1 of the I2, Br2, IBr, and ICl molecules are modeled. The model used includes three diabatic states, which correlate to X+(3P, 1D) + Y(1S0). These states are coupled by the spin-orbit interaction, which is assumed to be independent of the internuclear distance. For IBr and ICl, as well as for the ungerade states of I2 and Br2, satisfactory results are obtained. The model is less applicable to the gerade states of I2 and Br2, which is possibly results from the retainment of the asymptotic J A J B coupling of the angular momenta at equilibrium internuclear distances.  相似文献   

17.
Line profiles of the J = 1-0 transition of the hydrogen chloride, H35Cl and H37Cl isotopomers, were measured with a BWO-based submillimeter-wave spectrometer at AIST in real form: three hyperfine transitions for each isotopomer, i.e., total six lines at 625 and 626 GHz. The effect of foreign gases on the broadening and shift was determined for N2, O2, and Ar. The modified Voigt function was applied as the line shape function for preliminary analysis, where the collisional-narrowing effect was clearly observed. In the final analysis, we applied the Galatry function and determined the integral intensity, line center position, Lorentzian width, and contraction parameter for each absorption line. The magnitudes of the foreign-gas pressure-broadening coefficients decrease in order of N2, O2, and Ar. The line-shift coefficients were clearly observed, the magnitudes of which decrease in order of Ar, O2, and N2. The pressure dependence of contraction parameter was determined, although with poor precision.  相似文献   

18.
The infrared absorption spectrum of ν2 of H2Se in the region from 885 to 1347 cm?1 was obtained with a resolution limit of 0.025 cm?1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 1604 lines for the six isotopomers of H2Se, including 25 lines for the H274Se isotopomer, and have analyzed them using Watson's A-reduced Hamiltonian in the Ir rotational representation. Ground state constants for each of the five most abundant isotopomers were obtained from fits of microwave transitions combined with weighted averaged ground state combination differences formed from the infrared bands (010), (020), (100), and (001). Upper state constants for each of the five most abundant isotopomers were obtained from least-squares fits of the spectral lines of ν2, keeping the ground state constants fixed to the values determined from our ground state fits. An alternate set of ground state constants together with isotopic mass adjustment constants for all six isotopomers was determined by simultaneously fitting all available microwave transitions and infrared ground state combination differences. Keeping this set of ground state constants fixed, a single set of upper state constants and isotopic mass adjustment constants for the ν2 band was determined by a simultaneous fit of infrared spectral lines from all six isotopomers.  相似文献   

19.
The unstable HBS molecule has been produced in the gas phase by a high-temperature reaction between crystalline boron and hydrogen sulfide. Ground state rotational spectra have been observed in the millimeter-wave region, from 75 to 460 GHz, for the previously unobserved H11B33S and H10B33S isotopic species. The analysis of the hyperfine structure produced by the 10/11B and 33S nuclear spins in the low-J rotational transitions has yielded the first evaluation of the quadrupole coupling constant of 33S in the thioborine molecule, which was 6.361(15) MHz in H11B33S and 6.329(17) MHz in H10B33S. In addition, further measurements have been performed for the most abundant isotopomers H10/11B32/34S, for which improved values of rotational, centrifugal, and hyperfine structure constants have been determined.  相似文献   

20.
Delafossite-type oxides of CuTbyY1−yO2, CuEuyY1−yO2, CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 have been prepared by solid state reactions. The lattice-parameter dependence on the composition implies substitution of the Tb3+, Eu3+ and Ca2+ cations for the Y3+ site. Noticeable sharp emission lines due to the f-f transitions (5D47FJ, J=3-6) of Tb3+ or due to the f-f transitions (5D07FJ, J=0-4) of Eu3+ are observed at room temperature. Electrical conductivities of CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 are larger than those of CuTbyY1−yO2 and CuEuyY1−yO2, indicating the increase of the hole concentration caused by the substitution of Ca2+ for the Y3+ site. These results indicate the controllability of the luminescence and conductivity in CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 delafossite-type oxides by simultaneous substitution of the rare earth Tb3+ or Eu3+ cation and the Ca2+ cation for the Y3+ site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号