首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Unstable, short-lived BiH3 has been synthesized and investigated by rotational spectroscopy in the range 158 (J=1-0) to 1280 GHz (J=8-7). Quadrupole and spin-rotation hyperfine structures (eQq=584.676(96) MHz), and the A1A2 splitting of the K=3 ground state level, have been resolved. By merging the pure rotational data with 1764 ground state combination differences obtained from the analysis of high resolution Fourier transform infrared spectra of the ν1-ν4 bands [J. Mol. Spectrosc. (2004) (in press)] spanning J and K values up to 16 and 14, respectively, with 0?ΔK?9, the ground state rotational and centrifugal distortion constants up to octic and sextic terms for reductions A and B, respectively, have been determined. Of the reductions of the ground state rovibrational Hamiltonian, reduction B including ε rather than h3 as off-diagonal element is clearly favored. An experimental r0 structure of the very-near spherical oblate symmetric top BiH3, r(BiH)=178.82 pm and α(HBiH)=90.320°, has been deduced from the rotational constants B0=2.64160172(18) and C0=2.6010403(31) cm−1. The derived experimental re structure, re(BiH)=177.834(50) pm and αe(HBiH)=90.321(10)°, was determined. This is in excellent agreement with the most recent ab initio structure, re(BiH)=177.84 pm, and αe(HBiH)=90.12°.  相似文献   

2.
The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) was recorded in the 1017-1137 cm−1 region with an unapodized resolution of 0.0063 cm−1. Upper state (v12 = 1) rovibrational constants consisting of three rotational and five quartic constants were improved by assigning and fitting 2103 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The band centre of the A-type ν12 band is found to be 1076.98480 ± 0.00002 cm−1. The present analysis covering a wider wavenumber range and higher J and Kc values yielded upper state constants including the band centre which are more accurate than previously reported. The rms deviation of the upper state fit is 0.00045 cm−1. Improved ground state rovibrational constants were also determined from the fit of 1247 ground state combination differences (GSCD) from the presently-assigned infrared transitions of the ν12 band of C2D4. The rms deviation of the GSCD fit is 0.00049 cm−1. In the rovibrational analysis, local frequency perturbations were not detected even at high J and Ka values. The calculated inertial defect Δ12 is 0.32551 ± 0.00001 μÅ2. The line intensities of the individual transitions in the ν12 band were measured and the band strength of 39.8 ± 2.0 cm−2 atm−1 was derived for the ν12 band of C2D4.  相似文献   

3.
For the first time the infrared spectrum of F2BOH in the gas phase has been observed. After optimizing the conditions for the synthesis we have been able to obtain high-resolution (2.4-3.3×10−3 cm−1) infrared spectra in the ν8, ν9, and ν4 regions with both natural and 11B monoisotopic material. Analyses of the ν8 (BF2 out-of-plane bending) and ν9 (OH torsion) fundamental bands located at 684.160 and 522.870 cm−1, respectively, for F211BOH are presented here. Existing J≤10 microwave transitions were combined with novel ground state combination differences with J≤55 formed from A-type (ν4) and C-type (ν8, ν9) bands to yield substantially improved and extended ground state parameters. Using a standard Watson-type Hamiltonian, 81 and 91 upper state parameters were obtained by fitting about 2000 lines each with σ(fit) ca. 3.5×10−4 cm−1. The 81 and 91 states both appear to be unperturbed, as indicated by the agreement of the ground and excited state centrifugal distortion constants.  相似文献   

4.
Further analysis of the high-resolution (0.0015 cm−1) infrared spectrum of 32S16O3 has led to the assignment of more than 3100 hot band transitions from the ν2 and ν4 levels to the states 2ν2 (l=0), ν24 (l=±1), and 2ν4 (l=0,±2). These levels are strongly coupled via Fermi resonance and indirect Coriolis interactions to the ν1 levels, which are IR-inaccessible from the ground state. The unraveling of these interactions has allowed the solution of the unusual and complicated structure of the ν1 CARS spectrum. This has been accomplished by locating over 400 hot-band transitions to levels that contain at least 10% ν1 character. The complex CARS spectrum results from a large number of avoided energy-level crossings between these states. Accurate rovibrational constants are deduced for all the mixed states for the first time, leading to deperturbed values of 1064.924(11), 0.000 840 93(64), and 0.000 418 19(58) cm−1 for ν1, α1B, and α1C, respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. In addition, new values for some of the anharmonicity constants have been obtained. Highly accurate values for the equilibrium rotational constants Be and Ce are deduced, yielding independent, nearly identical values for the SO re bond length of 141.734 03(13) and 141.732 54(18) pm, respectively.  相似文献   

5.
A high-resolution (up to 0.0018 cm−1 unapodized) room temperature mid-infrared (650 to 750 cm−1, 13.3 to 15.4 μm) absorption measurement of the ν3 vibrational band of trifluoromethane (fluoroform, CHF3, HFC-23) vapor was made with a Fourier transform spectrometer. A rovibrational analysis of over 1400 infrared transitions of the ν3 band has yielded rotational constants, including sextic centrifugal distortion constants. The results are compared with two previous analyses of microwave and infrared spectra. The line positions of the lower J parts of the ν36−ν6 and 2ν3−ν3 hot bands have been identified and constants obtained for the 2ν3 state. The central Q branch and a few unblended transitions of the ν3 band of 13CF3H have been identified and the band origin has been determined. The relative intensities of the ν3 band together with the 2ν3−ν3 hot band and ν3 band of 13CF3H have been calculated using the constants derived from this work.  相似文献   

6.
The Fourier transform infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) was recorded at an unapodized resolution of 0.0063 cm−1 in the 1330-1475 cm−1 region. Upper state (ν12 = 1) rovibrational constants inclusive of three rotational, five quartic, and four sextic centrifugal distortion constants were improved by assigning and fitting 1444 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The present analysis yielded more higher-order upper state constants than previously reported. The rms deviation of the fit is 0.00055 cm−1. Improved ground state rovibrational constants were also determined from the combined fit of 2026 ground state combination differences (GSCD) from the assigned infrared transitions of the ν12, ν3 and ν6 bands and 21 microwave frequencies of C2H3D. The rms deviation of the GSCD fit is 0.00047 cm−1. The A-type ν12 band is centered at 1400.76262 ± 0.00004 cm−1. Local frequency perturbations were not detected in the analysis. The calculated inertial defect Δ12 is 0.20809 ± 0.00003 μÅ2.  相似文献   

7.
The ν1 (A1, 1583.22 cm−1) and ν4 (E, 1615.33 cm−1) Si-D stretching bands of monoisotopic D3Si35Cl have been studied by FTIR spectroscopy with a resolution of 3.3×10−3 cm−1. We have assigned 2341 rovibrational lines for ν1 (Jmax=70, Kmax=19) and 6207 for ν4 (Jmax=75, Kmax=27). Both (ΔK=±1, Δ?=±1) and (ΔK=±2, Δ?=?1) interactions connect the v1=1 and v4=1 levels, the latter exerting moreover a weak ?(2, 2) interaction. These interactions were taken into account in a nonlinear least-squares fit, refining 29 free parameters with a standard deviation of 0.257×10−3 cm−1 over 6722 nonzero-weighted data. Blended lines and about 250 of the 330 lines belonging to the K=11 subband of ν1 and the KΔK=−6 subband of ν4 were zero-weighted because they are locally perturbed respectively by the neighboring upper states of the 2ν36 (E, 1561.95 cm−1) and 3ν3 (A1, 1604.81 cm−1) bands. Equivalent fits were obtained for altogether three different models obeying constraints according to the theory of unitary equivalent reductions of the rovibrational Hamiltonian. By means of a band contour simulation both the transition moment ratio |M1:M4|=0.67 and a positive sign of the Coriolis intensity perturbation were determined.  相似文献   

8.
The four fundamental bands of 70GeD4 have been analyzed using the STDS software developed in Dijon (http://www.u-bourgogne.fr/LPUB/sTDS.html). Both infrared and Raman spectra were used to observe all fundamental bands. Infrared spectra of monoisotopic 70GeD4 were recorded in the regions 600 and 1500 cm−1 using the Bruker 120HR interferometer at Wuppertal. The resolution (1/maximum optical path difference) was between 2.3 and 3.3×10−3 cm−1 for the ν3 and ν4 infrared-active fundamental bands as well as for the interacting ν2 band. A high-resolution stimulated Raman spectrum of the ν1 band has been recorded in Madrid. The instrumental resolution of the Raman spectrum was 3.3×10−3 cm−1. We have performed a global fit of the ground state, ν24 bending dyad, and ν13 stretching dyad. We have used 1146, 139, and 676 assigned lines for ν24, ν1, and ν3, respectively. The standard deviation is 2.2×10−3 cm−1 for the bending dyad, 1.6×10−3 cm−1 for the ν3 infrared lines, and 1.7×10−3 cm−1 for the ν1 Raman lines. These results enabled us to perform the first experimental determination of the equilibrium bond length of germane as re=1.5173(1) Å.  相似文献   

9.
The ν1 (A1, 1578.31 cm−1)/ν4(E, 1615.17 cm−1) Si-D stretching dyad of D3SiF has been studied by FTIR spectroscopy with a resolution of 2.4×10−3 cm−1. Only weak interactions of Coriolis (ΔK=±1, Δ?=±1) and α resonance (ΔK=±2, Δ?=?1) type between ν1 and ν4, and of ? (2,−4) type within ν4, were revealed. However, the v1=1 and v4=1 levels were found to be severely perturbed by the v3=v5=1 (E, 1590.37 cm−1) and v2=v3=1 (A1, 1604.25 cm−1) states. These perturbations are observable only near level crossings involving strong Coriolis and α interactions. The energy structure within these perturbers is severely complicated by strong Coriolis and α resonances and by ? (2, 2), ? (2,−1), and ? (2,−4) interactions as already revealed by the ν2(A1, 710.16 cm−1) and ν5 (E, 701.72 cm−1) fundamentals. Interactions of the perturbing states with the ν14 dyad are particularly evident in local crossings. In total, 12 transitions belonging to the dark states and 68 perturbation-allowed transitions within the ν14 dyad have been detected among the more than 5000 transitions that have been assigned for the ν14 dyad, with Jmax and Kmax of 50 and 30, respectively. Altogether about 85% of the assigned transitions were fitted with a standard deviation of 0.221×10−3 cm−1, leading to 61 parameters of the interacting polyad.  相似文献   

10.
The infrared spectrum of short-lived PH2Br has been observed by studying the reaction of P2H4 with gaseous HBr. The a-type fundamental bands ν3 at 812 cm−1 and ν4 at 399 cm−1 have been recorded with a resolution of ca. 5×10−3 cm−1, and their rotational fine structure has been observed. While the ν4 band and its hot band 2ν4−ν4 associated with the P-Br stretching reveal compact qP and qRJ-clusters, the HPBr bending fundamental ν3 shows a widely dispersed structure. A c-type Coriolis interaction of ν3 (Ka) with the unobserved ν6 state (Ka+1) at 795 cm−1, with resonance between Ka=1 and 2, was detected and analyzed. Comparison with results of ab initio calculations revealed in general excellent agreement.  相似文献   

11.
The infrared spectrum of DNO3 (deuterated nitric acid) was recorded at high resolution (0.0027 cm−1) in the 700-1400 cm−1 region on a Bruker IFS 120 HR Fourier transform spectrometer. The analysis of the ν5 band of DNO3 centred at 887.657 cm-1 which is mostly an A-type band, was performed making use of the ground state parameters achieved by Drouin et al. [Drouin BJ, Miller CE, Fry JL, Petkie DT, Helminger P, Medvedev IR. J Mol Spectrosc 2006;236:29-34]. The ν5 fundamental band is strongly perturbed because of the existence of the ν7+ν9 dark combination band at 882.21  cm-1. The 51 and 7191 energy levels of DNO3 are coupled through A and B type Coriolis resonances, and as a consequence, numerous lines from the ν7+ν9 dark combination band could be identified also. In this way about 1070 and 75 energy levels of the 51 and 7191 vibrational states, respectively, were satisfactorily reproduced by the energy levels calculation which account for the observed resonances. A reasonable estimation of the absolute line intensities for the ν5 band of DNO3 was performed using the ν5 transition operator from H14NO3. The spectrum also features the ν5+ν6ν6, ν5+ν7ν7 and ν5+ν9−ν9 hot bands located at 881.03, 882.61 and 884.45 cm−1, respectively.  相似文献   

12.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

13.
The 2900-3400 cm−1 spectral range is revisited for an accurate determination of line positions and line intensities of the 3ν3, ν1+2ν3, 2ν13, and 3ν1 bands of ozone. The fit on 4520 rotational energy levels of (012), (111), (210), (130), (003), (102), (201), and (300) vibrational states determined from observed transitions of cold and hot bands in the 2400-3400 cm−1 region with Jmax=65 and Ka max=20 gives a r.m.s.=7×10−4 cm−1 and provides a satisfactory agreement between calculated and observed line positions (dimensionless standard deviation is χ=1.44). The set of 2580 line intensities of 7 rovibrational bands has been measured and fitted with a r.m.s.=6.9% (χ=1.2), leading to the determination of transition moment parameters for these bands. Using these parameters we have obtained more precise estimation for the integrated band intensities S(3ν3)=1.41×10−19, S(ν1+2ν3)=1.28×10−20, S(2ν13)=7.91×10−21, S(3ν1)=4.72×10−22 cm−1/mol cm−2 at 296 K, with a cutoff 2×10−26 cm−1/mol cm−2. The interactions of the tetrad (003)/(102)/(201)/(300) with the (130) state and the tetrad (040)/(012)/(111)/(210) are studied.  相似文献   

14.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives rms = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

15.
For the first time the infrared spectrum of the AsHD2 molecule has been measured in the region of the bending fundamental bands ν3, ν4, and ν6 on a Fourier transform spectrometer with a resolution of 0.0024 cm−1 and analyzed. More than 5500 transitions with Jmax = 26 have been assigned and used both to obtain “ground state combination differences” and for the determination of upper state ro-vibrational energies of the triad (001000), (000100), and (000001). Rotational parameters including centrifugal distortion coefficients up to octic terms of the ground vibrational state were calculated by fitting more than 500 “ground state combination differences” with Jmax and . The obtained set of 24 parameters provides a rms-deviation of 0.00011 cm−1. The upper energies were fitted with 52 parameters of an effective Hamiltonian which takes into account strong resonance interactions between all vibrational states of the triad (001000), (000100), and (000001). The rms-deviation for the energy levels considered in the fit is 0.00014 cm−1.  相似文献   

16.
High-resolution (0.0013 cm−1) infrared spectra have been recorded for trans,trans-1,4-difluorobutadiene (ttDFBD) and cis,cis-1,4-difluorobutadiene (ccDFBD). The rotational structure in two C-type bands (ν10 and ν12) and one A-type band (ν22) for ttDFBD and in two C-type bands (ν11 and ν12) for ccDFBD has been analyzed. Ground state and upper state rotational constants, except for ν10 of ttDFBD, have been fitted. Band centers are 934.1 cm−1 (ν10), 227.985 cm−1 (ν12), and 1087.919 cm−1 (ν22) for ttDFBD. Band centers are 762.891 cm−1 (ν11) and 327.497 cm−1 (ν12) for ccDFBD. The small inertial defects in the ground state confirm that both isomers are planar. Obtaining the ground state rotational constants for the two isomers of DFBD is a first step toward determining their semi-experimental equilibrium structures.  相似文献   

17.
The region of the infrared-active band of the ν9 CH2 bending mode [1.1.1]propellane has been recorded at a resolution (0.0025 cm−1) sufficient to distinguish individual rovibrational lines. This region includes the partially overlapping bands ν9 (e′) = 1459 cm−1, 2ν18 (l = 2, E′) = 1430 cm−1, ν6 + ν12 (E′) = 1489 cm−1, and ν4 + ν15 (A2″) = 1518 cm−1. In addition, the difference band ν4 − ν15 (A2″) was observed in the far infrared near 295 cm−1 and analyzed to give good constants for the upper ν4 levels. The close proximities of the four bands in the ν9 region suggest that Coriolis and Fermi resonance couplings could be significant and theoretical band parameters obtained from Gaussian ab initio calculations were helpful in guiding the band analyses. The analyses of all four bands were accomplished, based on our earlier report of ground state constants determined from combination differences involving more than 4000 pairs of transitions from five fundamental and four combination bands. This paper presents the analyses and the determination of the upper state constants of all four bands in the region of the ν9 band. Complications were most evident in the 2ν18 (l = 2, E′) band, which showed significant perturbations due to mixing with the nearby 2ν18 (l = 0, A1′) and ν4 + ν12 (E′) levels which are either infrared inactive as transitions from the ground state, or, in the latter case, too weak to observe. These complications are discussed and a comparison of all molecular constants with those available from the ab initio calculations at the anharmonic level is presented.  相似文献   

18.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

19.
For the first time the infrared spectrum of PHD2 was recorded in the region of the PH stretching fundamental ν1 at 2324.005 cm−1 and the overtone 2ν1 at 4563.634 cm−1 with a resolution of 4.2×10−3 cm−1 and 8.8×10−3 cm−1, respectively. In the analyses about 1340 and 1020 transitions were assigned to the corresponding ν1 and 2ν1 bands, which provided 316 and 248 upper energies, respectively. Since both the bands are sufficiently isolated, a standard Watson-type Hamiltonian (A-reduction, Ir-representation) was employed. The obtained sets of spectroscopic parameters correlate very well both with each other, and with the corresponding parameters of the ground vibrational state.  相似文献   

20.
The absorption spectrum of D2O vapor from 0.2 to 2.0 THz (6.7-67 cm−1) which is associated with rotational modes was measured at one atmosphere using terahertz time-domain spectroscopy (THz-TDS). The linewidth and collisional dephasing times were measured for 26 pure rotational transitions in the ground vibrational state (0 0 0). The temperature dependence of the linewidth (Δν) behaves as Δν ∼ T−3/4 and the linewidth decrease with increasing temperature is attributed to the 1/r6 force of interaction between colliding D2O molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号