首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemical activation of nickel‐azido complex 2 [Ni(N3)(PNP)] (PNHP=2,2′‐di(isopropylphosphino)‐4,4′‐ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PNPNH)], which is crystallographically characterized. DFT calculations support photoinitiated N2‐loss of the azido complex to generate a rare, transient NiIV nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni? P bond generates a coordinatively unsaturated NiII imidophosphorane P?N donor. This species shows unprecedented reactivity toward 1,2‐addition of a C? H bond of benzene to form 3 . The structurally characterized chlorido complex 4 [Ni(Cl)(PNPNH)] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C? H bond activation by a trapped transient nitrido species of a late transition metal.  相似文献   

2.
Reaction of the flexible phenolic carboxylate ligand 2‐(3,5‐dicarboxylbenzyloxy)benzoic acid (H3L) with nickel salts in the presence of 1,2‐bis(pyridin‐4‐yl)ethylene (bpe) leads to the generation of a mixture of the two complexes under solvolthermal conditions, namely poly[[aqua[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3}nickel(II)] dimethylformamide hemisolvate monohydrate], {[Ni(C16H10O7)(C12H10N2)(H2O)]·0.5C3H7NO·H2O}n or {[Ni(HL)(bpe)(H2O)]·0.5DMF·H2O}n, 1 , and poly[[diaquatris[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]bis{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ2O1:O5}nickel(II)] dimethylformamide disolvate hexahydrate], {[Ni2(C16H10O7)2(C12H10N2)3(H2O)2]·2C3H7NO·6H2O}n or {[Ni2(HL)2(bpe)3(H2O)2]·2DMF·6H2O}n, 2 . In complex 1 , the NiII centres are connected by the carboxylate and bpe ligands to form two‐dimensional (2D) 4‐connected (4,4) layers, which are extended into a 2D+2D→3D (3D is three‐dimensional) supramolecular framework. In complex 2 , bpe ligands connect to NiII centres to form 2D layers with Ni6(bpe)6 metallmacrocycles. Interestingly, 2D+2D→3D inclined polycatenation was observed between these layers. The final 5‐connected 3D self‐penetrating structure was generated through further connection of Ni–carboxylate chains with these inclined motifs. Both complexes were fully characterized by single‐crystal analysis, powder X‐ray diffraction analysis, FT–IR spectra, elemental analyses, thermal analysis and UV–Vis spectra. Notably, an interesting metal/ligand‐induced crystal‐to‐crystal transformation was observed between the two complexes.  相似文献   

3.
Photochemical activation of nickel‐azido complex 2 [Ni(N3)(PNP)] (PNHP=2,2′‐di(isopropylphosphino)‐4,4′‐ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PNPNH)], which is crystallographically characterized. DFT calculations support photoinitiated N2‐loss of the azido complex to generate a rare, transient NiIV nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni P bond generates a coordinatively unsaturated NiII imidophosphorane PN donor. This species shows unprecedented reactivity toward 1,2‐addition of a C H bond of benzene to form 3 . The structurally characterized chlorido complex 4 [Ni(Cl)(PNPNH)] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C H bond activation by a trapped transient nitrido species of a late transition metal.  相似文献   

4.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

5.
The nickel(0) comlex [Ni(np3)], np3  tris(2-diphenylphinoethyl)amine, which has a trigonal pyramidal geometry in the solid state, readily reacts in solution with organic halides (CH3I, C2H5Cl, C3H7Cl, C6H5Cl, C6H5Br, C6H5I and C6H5CH2Cl) to give nickel(I) species with formula [NiX(np3)], (X  Cl, Br, I). Benezene, biphenyl, o-, m-, p-chlorobiphenyl are the other products from the reaction between the title complex and chlorobenzene.  相似文献   

6.
Preparation of Compounds of the Series C2ClnF6?n with High Fluor Contents by Heterogeneous Catalysis A survey is given on catalytic systems for Cl? F exchange reactions with C2Cl6. A catalyst is described which is formed by reaction of C2Cl4/Cl2/HF on γ-Al2O3 in Ni reactors. Deposition of nickel proceeds by the reaction Ni(CO)4 → Ni + 4 CO. The formation of the catalyst and the catalytic reactions which give highly fluorinated C? Cl? F compounds are discussed.  相似文献   

7.
Dynamic sorption is used to study the adsorption properties of palladium and nickel nanoparticles immobilized on a surface of ultrafine diamond (UFD). The test adsorbates are n-alkanes (C6-C8), benzene, chloroform, diethyl ether, chlorobenzene, and o-dichlorobenzene. For each adsorbate, the adsorption isotherms are measured, the isosteric heats of adsorption and contributions to them from the energies of dispersion Q disp and specific (donor-acceptor) Q spec interactions are calculated, and the electron-donor and electron-acceptor characteristics of the surface of the original UFD and the UFDs with immobilized metal nanoparticles are estimated. It is shown that chlorobenzene is sorbed by the physical adsorption mechanisms on the original support and on a sample modified with nickel nanoparticles, and is chemisorbed on a support modified with palladium nanoparticles. The highest heats of chemisorption are obtained on UFD modified with Pd nanoclusters; a surface of UFD modified with Ni nanoclusters is less active with respect to these chlorobenzenes than a surface of unmodified UFD. Benzene, chloroform, and diethyl ether are sorbed on unmodified and modified UFDs by a physical adsorption mechanism; the highest and lowest values of Q spec for these materials are obtained on UFDs modified with Pd and Ni nanoclusters, respectively.  相似文献   

8.
The imidazolium chloride [C3H3N(C3H6NMe2)N{C(Me)(=NDipp)}]Cl ( 1 ; Dipp=2,6‐diisopropyl phenyl), a potential precursor to a tritopic NimineCNHCNamine pincer‐type ligand, reacted with [Ni(cod)2] to give the NiI‐NiI complex 2 , which contains a rare cod‐derived η3‐allyl‐type bridging ligand. The implied intermediate formation of a nickel hydride through oxidative addition of the imidazolium C−H bond did not occur with the symmetrical imidazolium chloride [C3H3N2{C(Me)(=NDipp)}2]Cl ( 3 ). Instead, a Ni−C(sp3) bond was formed, leading to the neutral NimineCHNimine pincer‐type complex Ni[C3H3N2{C(Me)(=NDipp)}2]Cl ( 4 ). Theoretical studies showed that this highly unusual feature in nickel NHC chemistry is due to steric constraints induced by the N substituents, which prevent Ni−H bond formation. Remarkably, ethylene inserted into the C(sp3)−H bond of 4 without nickel hydride formation, thus suggesting new pathways for the alkylation of non‐activated C−H bonds.  相似文献   

9.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

10.
The coordination geometry of the NiII atom in the title complex, poly[diazidobis[μ‐1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene‐κ2N4:N4′]nickel(II)], [Ni(N3)2(C12H12N6)2]n, is a distorted octahedron, in which the NiII atom lies on an inversion centre and is coordinated by four N atoms from the triazole rings of two symmetry‐related pairs of 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene (bbtz) ligands and two N atoms from two symmetry‐related monodentate azide ligands. The NiII atoms are bridged by four bbtz ligands to form a two‐dimensional (4,4)‐network.  相似文献   

11.
3-Phenylpropenal benzoylhydrazone (HL) reacts with cobalt, nickel, and copper chlorides, nitrates, and acetates to give coordination compounds MX2 · nH2O [M = Co, Ni, Cu; X = Cl, NO3, HL = C6H5CH=CHCH=NNHC(O)C6H5; n = 0, 2] and ML2 · nH2O (M = Co, Ni, Cu; n = 1–3). Complexes MALCI (M = Co, Ni, Cu) were obtained by these reactions in the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, 4-CH3C5H4N). All the compounds have a monomeric structure. Azomethine (HL) in them behaves as a bidentate N,O-ligand. Thermolysis of the complexes involves the stages of dehydration (70–90°C), deaquation (145–155°C) or deamination (145–185°C), and complete thermal decomposition (330–490°C).  相似文献   

12.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

13.
In both title compounds, (acetyl­acetonato‐O,O′)­bis(3‐cyano­pyridine‐N)­nickel(II), (I), and (acetyl­acetonato‐O,O′)­bis(4‐cyanopyridine‐N)­nickel(II), (II), both [Ni(C5­H7O2)2(C6H4N2)2], the NiII atom, which is situated on a centre of symmetry, is octahedrally coordinated. Distances and angles for (I) and (II), respectively, are: Ni—O 2.009 (2)/2.016 (2) and 2.0110 (16)/2.0238 (18) Å, Ni—N 2.116 (3) and 2.179 (2) Å, O—Ni—O 91.86 (10) and 90.19 (7)°, and O—Ni—N 91.27 (11)/90.19 (11) and 89.65 (8)/90.79 (7)°.  相似文献   

14.
Hydrates of 3-phenylpropenal thiosemicarbazone (HL·H2O) and semicarbazone (HL′·H2O) react in methanol with cobalt, nickel, copper, and zinc chlorides, nitrates, and acetates to form coordination compounds MX2·2HL·nSolv [M = Co, Ni, Cu, Zn; X = Cl, NO3; HL = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3; Solv = H2O, CH3OH], CuX2·HL·nH2O [M = Ni, Cu; n = 0, 1], ML2·nH2O and ML′·nH2O [M = Co, Ni, Zn; HL′ = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3]. In the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, and 4-CH3C5H4N) these reactions yield the complexes Cu(A)LCl·CH3OH and M(A)LX·nH2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. The copper complexes with the amine ligands are of polynuclear structure, and other complexes are monomeric. Carbazones (HL and HL′) are included in the complexes as bidentate N,S-and N,O-ligands. The thermolysis of the complexes involves the stages of removing solvent crystallization molecules (70–90°C), deaquation (150–170°C), and full thermal decomposition (500–580°C).  相似文献   

15.
Conclusions By studying the liquid-phase dimerization of ethylene in the presence of Cat-Et3Al2-Cl3 catalytic systems based on a nickel complex heterogenized on Al2O3 and a number of model nickel complexes, a similar activity and selectivity of the process has been established (Cat=NiPPh3(CO)2L, where L=PPh3, CO, Al2O3; Ni(PPh3)2(CO)2; Ni(PPh3)2(2-C2H4); Ni[P(C6H11)3]2(H)Cl and Ni(PPh3)(Et)Cl).The results of the investigation agree with the hypothesis that mono- and diolefinic nickel complexes are formed as the active intermediates in the reaction.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2466–2469, November, 1988.  相似文献   

16.
The fragmentation behavior of the anisole ion (C6H5OCH3) was examined using threshold photoelectron-photoion coincident (TPEPICO) mass spectrometry. Four major fragments are observed in the ion time-of-flight spectra at photon energies less than 14 eV: C6H5O+ (m/z 93), C6H+7 (m/z 79), C6H+6 (m/z 78), and C5H+5 (m/z 65). Rate constants for the production of the ion m/z 78 near threshold were found to agree well with those calculated on the basis of RRKM theory. Most of the excess energy at threshold for this process is a result of the kinetic shift.  相似文献   

17.
Three trinuclear zinc(II)/nickel(II) complexes with two pentadentate ligands, N-p-nitrobenzoylsalicylhydrazidate (H3-p-nbzshz) and N-o-nitrobenzoylsalicylhydrazidate (H3-o-nbzshz) have been synthesized and characterized by X-ray crystallography. The complex [Zn3(p-nbzshz)2(C5H5N)4]n (1) molecule exhibits a one-dimensional wave-like chain structure resulting from the linkage of phenolate oxygen donor atoms of the ligands between neighboring motifs. The two nickel(II) complexes, Ni3(p-nbzshz)2(C5H5N)4 (2) and Ni3(o-nbzshz)2(C3H7NO)2(C2H6O)2 (3) are trinuclear complexes in which three nickel(II) centers exhibit alternating square-planar and octahedral geometries. Complex 2 exhibits a curved Ni3 metal arrangement with a Ni(1)–Ni(2)–Ni(3) angle of 62.36°, while the three nickel atoms in complex 3 are strictly linear with an angle of 180°.  相似文献   

18.
Catalyst formation in the system Ni(acac)2, C3H4, RnAlX3?n was studied. Polymerization experiments showed that, by replacing ionic groups such as acac?, Br?, Cl? with alkyl or hydride groups, an active catalyst is obtained. Electrolysis of Ni(acac)2 in tetrahydrofuran also gives an active catalyst. Lewis acids like (iBu)3Al and Et3Al increase the polymerization rate, while Lewis bases like pyridine and triphenylphosphine not only decrease the rate but also change selectivity. The selectivity is not changed if different transition metals (e.g. Co, Pd, Ni) are used. Kinetic measurements show a first order dependence on Ni. The dependence on (iBu)3Al changes from first to zero order with increasing AlNi ratio. This can be explained by assuming that the very active catalyst is formed via an equilibrium between a nickel complex and (iBu)3Al. A first order deactivation of the nickel catalyst is observed; it is faster during polymerization than during ageing of the catalyst.  相似文献   

19.
In the coordination compound poly[diaqua(μ2‐4,4′‐bipyridine)(μ2‐4‐carboxylatocinnamato)nickel(II)], [Ni(C10H6O4)(C10H8N2)(H2O)2]n, both the 4‐carboxylatocinnamate and 4,4′‐bipyridine (4,4′‐bpy) ligands act as bidentate bridges, connecting the NiII centres in an octahedral coordination geometry into a two‐dimensional (4,4) layer. Each layer polycatenates two other identical layers, thus giving a rare 2D → 3D polycatenating network (2D and 3D are two‐ and three‐dimensional, respectively), with a mutually parallel arrangement of the layers. The chiral 4,4′‐bpy ligands link the NiII centres into chiral chains, thus introducing chirality into the layer and the resulting 3D network.  相似文献   

20.
A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号