首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the nucleon-nucleon interaction to leading order in 1/N C in terms of Fermi invariants allows a dynamical interpretation of the interaction and a consistent construction of the associated interaction currents. The numerically significant components of 4 different modern realistic phenomenological interaction models admit very similar meson exchange interpretations in the large-N C limit. The ratio of the volume integrals of the leading, next-to-leading and next-to-next leading-order terms in these interaction models is roughly , which corresponds fairly well to the ratios of 1/N C 2 between the terms that would be suggested by the 1/N C expansion if N C = 3.Received: 30 September 2002, Published online: 22 October 2003PACS: 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) - 21.30.Cb Nuclear forces in vacuum  相似文献   

2.
The mixed micellization between the cationic gemini surfactant [ C12H25( CH3)2N+( C2H4) N+( CH3)2 C12H25•2Br-] and the cationic cetyltrimethylammonium bromide (CTAB) in 150 mM KBr solutions has been investigated. The variation of the cmc of the mixtures, measured by surface tension experiments, with composition revealed synergism in micelle formation. T-Jump and light scattering experiments performed in the vicinity of the crossover volume fraction showed the existence of two micellar populations, possibly linear and toroidal micelles. Rheological and dynamic light scattering experiments allowed to fully characterize the linear viscoelasticity of the mixtures. These measurements revealed synergistic gains in viscoelastic properties with a maximum of the stress-relaxation time around the equimolar composition. These effects are ascribed to a progressive intermicellar crosslinking resulting from a continuous increase of the end-cap energy with the 12-2-12 content in the mixture. Received: 18 November 2002 / Accepted: 8 April 2003 / Published online: 27 May 2003 RID="a" ID="a"e-mail: candau@fresnel.u-strasbg.fr  相似文献   

3.
Histidine is an important and versatile amino acid residue that plays a variety of structural and functional roles in proteins. Although the Raman bands of histidine are generally weak, histidine in the N‐deuterated cationic form with imidazole Nπ D and Nτ D bonds (N‐deuterated histidinium) gives two strong Raman bands assignable to the C4C5 stretch (νCC) and the Nπ C2 Nτ symmetric stretch (νNCN) of the imidazole ring. We examined the Raman spectra of N‐deuterated histidinium in 12 crystals with known structures. The observed νCC and νNCN wavenumbers were analyzed to find empirical correlations with the conformation and hydrogen bonding. The effect of conformation on the vibrational wavenumber was expressed as a threefold cosine function of the Cα Cβ C4C5 torsional angle. The effect of hydrogen bonding at Nπ or Nτ was assumed to be proportional to the inverse sixth power of the distance between the hydrogen and acceptor atoms. Multiple linear regression analysis clearly shows that the conformational effect on the vibrational wavenumber is comparable for νCC and νNCN. The hydrogen bond at Nπ weakly lowers the νCC wavenumber and substantially raises the νNCN wavenumber. On the other hand, the hydrogen bond at Nτ strongly raises the νCC wavenumber but does not affect the νNCN wavenumber. These empirical correlations may be useful in Raman spectral analysis of the conformation and hydrogen bonding states of histidine residues in proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrogenated amorphous carbon nitride (a-C:N:H) films were synthesized from CH4/N2, C2H4/N2 and C2H2/N2 mixtures using dielectric barrier discharge (DBD) plasmas. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) were used to characterize the surface morphology, bonding structure, and composition of the a-C:N:H films. The influences of plasma parameters (discharge pressure in the range of 25-1000 Pa) and feed gases used on the composition and the structure of deposited films were systematically studied. The a-C:N:H films with the uniform surface structure were deposited by low-pressure DBD plasmas with various systems. Compared to the films deposited in C2H4/N2 and C2H2/N2 systems, the films deposited in the CH4/N2 system exhibit the relatively lower surface roughness and deposition rate. For all the films prepared in these three systems, increasing the discharge pressure leads to an increase in film surface roughness and deposition rate. Significant differences among the FTIR spectra of all deposited a-C:N:H films were also observed. Both FTIR and XPS spectra show that for all the films deposited in three different systems, increasing the N2 fraction leads to a decrease in the H content of deposited a-C:N:H films and an increase in the N content. The properties of deposited films may change from those of polymerlike to diamond-like when the discharge pressure is increased. Correlations between the film properties and growth processes are discussed in this study.  相似文献   

5.
《Nuclear Physics B》1999,539(3):557-576
We calculate the critical amplitudes of the Polyakov loop and its susceptibility at the deconfinement transition of (3 + 1)-dimensional SU(2) gauge theory. To this end we study the corrections due to irrelevant exponents in the scaling functions. As a guiding line for determining the critical amplitudes we use envelope equations which we derive from the finite size scaling formulae of the observables. We have produced new high precision data on Nσ3 × 4 lattices for Nχ = 12, 18, 26 and 36. With these data we find different corrections to the asymptotic scaling behaviour above and below the transition. Our result for the universal ratio of the susceptibility amplitudes is C+/C = 4.72(11) and thus in excellent agreement with a recent measurement for the 3d Ising model.  相似文献   

6.
For obtaining the maximal output power, five lasing gas mixtures (CO2, N2, He, Xe and H2) in a sealed-off CO2 laser are optimized by applying a genetic algorithm and solving CO2 laser kinetics equations. A comparison of numerical simulations shows that the optimal pressures of CO2 and N2 are 1.15 Torr and 7.32 Torr, respectively. Accordingly, the maximum laser power of 124 W is obtained by utilizing the optimal gas combination and an optimized resonator with a length of 1.2 m. Received: 14 August 2002 / Published online: 22 January 2003 The project supported by Zhejiang Provincial Natural Science Foundation of China (No. 602098). RID="*" ID="*"Corresponding author. Fax: +86-571/8832-0369, E-mail: chengch@mail.hz.zj.cn  相似文献   

7.
We consider a system of gravity plus free massless matter fields in 4 + N dimensions, and look for solutions in which N dimensions form a compact curved manifold, with the energy-momentum tensor responsible for the curvature produced by quantum fluctuations in the matter fields. For manifolds of sufficient symmetry (including spheres, CPN, and manifolds of simple Lie groups) the metric depends on only a single multiplicative parameter ?2, and the field equations reduce to an algebraic equation for ?, involving the potential of the matter fields in the metric of the manifold. With a large number of species of matter fields, the manifold will be larger than the Planck length, and the potential can be calculated using just one-loop graphs. In odd dimensions these are finite, and give a potential of form CN/?4. Also there are induced Yang-Mills and Einstein-Hilbert terms in the effective 4-dimensional action, proportional to additional numerical coefficients, DN and EN. General formulas are given for the gauge coupling g2 in terms of CN and DN, and the ratio ?2/8πG in terms of CN and EN. Numerical values for CN, DN, and EN are obtained for scalar and spinor fields on spheres of odd dimensionality N. It is found that the potential, g2 and ?2/8πG can all be positive but only when the compact manifold has N = 3 + 4 k dimensions. (The positivity of the potential is needed for stability of the sphere against uniform dilations or contractions). In this case, solutions exist either for spinor fields alone or for suitable mixes of spinor and scalar fields provided the ratio of the number of scalar fields to the number of fermion fields is not too large. Numerical values of the O(N + 1) gauge couplings and 8φG/?2 are calculated for illustrative values of the numbers of spinor fields. It turns out that large numbers of matter fields are needed to make these parameters reasonably small.  相似文献   

8.
9.
10.
We present here an elementary pedagogical introduction to CPN solitons in quantum Hall systems. We begin with a brief introduction to both CPN models and to quantum Hall (QH) physics. We then focus on spin and layer-spin degrees of freedom in QH systems and point out that these are in fact CPN fields for N = 1 and N = 3. Excitations in these degrees of freedom will be shown to be topologically non-trivial soliton solutions of the corresponding CPN field equations. We conclude with a brief summary of our own recent work in this area, done with Sankalpa Ghosh. Received 17 November 2001 Published online 2 October 2002 RID="a" ID="a"e-mail: doug0700@mail.jnu.ac.in  相似文献   

11.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

12.
We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.  相似文献   

13.
Existence and uniqueness of the solution are proved for the ‘master equation’ derived from the BPS equation for the vector multiplet scalar in the U(1) gauge theory with N F charged matter hypermultiplets with eight supercharges. This proof establishes that the solutions of the BPS equations are completely characterized by the moduli matrices divided by the V-equivalence relation for the gauge theory at finite gauge couplings. Therefore the moduli space at finite gauge couplings is topologically the same manifold as that at infinite gauge coupling, where the gauged linear sigma model reduces to a nonlinear sigma model. The proof is extended to the U(N C) gauge theory with N F hypermultiplets in the fundamental representation, provided the moduli matrix of the domain wall solution is U(1)-factorizable. Thus the dimension of the moduli space of U(N C) gauge theory is bounded from below by the dimension of the U(1)-factorizable part of the moduli space. We also obtain sharp estimates of the asymptotic exponential decay which depend on both the gauge coupling and the hypermultiplet mass differences.  相似文献   

14.
Adsorption isotherms on graphite of CO2, N2O and C2N2 disclose three 2D phases: gas, liquid and solid. However for C2N2, the results are also consistent with a single fluid-solid coexistence domain. The cohesion energy of the 2D solid monolayer is strikingly higher for C2N2 than for CO2 and N2O. This we trace back to a particularity of the shape of the C2N2 molecule, which makes possible a more energetic 2D solid structure. For CO2 and N2O a strong hysteresis is associated with the 2D liquid-solid transition.  相似文献   

15.

We investigate the generalized monogamy and polygamy relations N-qubit systems. We give a general upper bound of the αth (0 ≤ α ≤ 2) power of concurrence for N-qubit states. The monogamy relations satisfied by the αth (0 ≤ α ≤ 2) power of concurrence are presented for N-qubit pure states under the partition AB and C1...CN− 2, as well as under the partition ABC1 and C2CN− 2. These inequalities give rise to the restrictions on entanglement distribution and the trade off of entanglement among the subsystems. Similar results are also derived for negativity.

  相似文献   

16.
We realise Heckenberger and Kolb??s canonical calculus on quantum projective (N ? 1)-space C q [C p N?1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [SU N ]. We introduce a calculus on the quantum sphere C q [S 2N?1] in the same way. With respect to these choices of calculi, we present C q [C p N?1] as the base space of two different quantum principal bundles, one with total space C q [SU N ], and the other with total space C q [S 2N?1]. We go on to give C q [C p N?1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb??s calculus as an associated vector bundle to the principal bundle with total space C q [SU N ]. Finally, we construct strong connections for both bundles.  相似文献   

17.
We present a new method to derive an infinite series of conserved local charges for the two-dimensional CPN σ-models. The generating relation for the conservation laws is a couple of first-order nonlinear differential equations. The method displays transparently the connection of the local charges with nonlocal dynamical charges of CPN models previously found.  相似文献   

18.
Abstract

Basing on “ab-initio” calculations, C3N4 was claimed to be an ultra-hard material with a bulk-modulus close to that of diamond. Five different structural varieties were announced: the graphitic form, the zinc blende structure, the α and β forms of Si3N4 and another form, isostructural with the high pressure variety of Zn2Si04.

Using the same strategy as that developed for diamond or c-BN synthesis, it appears that the graphitic form could be an appropriate precursor for preparing the 3D varieties. Two main problems characterize the C3N4 synthesis: (-) the temperature should be reduced in order to prevent nitrogen loss, (-) the reactivity of the precursors should be improved.

Consequently, we have developed a new process using the solvothermal decomposition of organic precursors containing carbon and nitrogen in the presence of a nitriding solvent. The resulting material, with a composition close to C3N4, has been characterized by different physico-chemical techniques.  相似文献   

19.
Within the framework of phenomenological Lagrangians we construct the effective action of QCD relevant for the study of semileptonic decays of charmed mesons. Hence we evaluate the form factors of at leading order in the 1/N C expansion and, by demanding their QCD-ruled asymptotic behavior, we constrain the couplings of the Lagrangian. The features of the model-independent parameterization of form factors are provided, and their relevance for the analysis of experimental data are pointed out. Received: 28 October 2002 / Published online: 24 January 2003  相似文献   

20.
We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号