首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
We study the quantum melting of the two-dimensional Wigner crystal using a fixed node quantum Monte Carlo approach. In addition to the two already known phases (Fermi liquid at large density and Wigner crystal at low density), we find a third stable phase at intermediate values of the density. The third phase has hybrid behaviors in between a liquid and a solid. This hybrid phase has the nodal structure of a Slater determinant constructed out of the bands of a triangular lattice.  相似文献   

2.
Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called “ripplonic polarons”, that change how electrons are localized, and that shifts the transition between the Wigner solid and the liquid phase. We use an all-coupling, finite-temperature variational method to study the formation of a ripplopolaron Wigner solid on a liquid helium film for different regimes of the electron-ripplon coupling strength. In addition to the three known phases of the ripplopolaron system (electron Wigner solid, polaron Wigner solid, and electron fluid), we define and identify a fourth distinct phase, the ripplopolaron liquid. We analyse the transitions between these four phases and calculate the corresponding phase diagrams. This reveals a reentrant melting of the electron solid as a function of temperature. The calculated regions of existence of the Wigner solid are in agreement with recent experimental data.  相似文献   

3.
The ground-state phase diagram of 2D electrons in a high Landau level (index N = 2) is studied by the density-matrix renormalization group method. Pair correlation functions are systematically calculated for various filling factors from nu = 1/8 to 1/2. It is shown that the ground-state phase diagram consists of three different charge density wave states called stripe phase, bubble phase, and Wigner crystal. The boundary between the stripe and the bubble phases is determined to be nu(s-b)c approximately 0.38, and that for the bubble phase and Wigner crystal is nu(b-W)c approximately 0.24. Each transition is of first order.  相似文献   

4.
Employing the density matrix renormalization group method and strong-coupling perturbation theory, we study the phase diagram of the SU(2)xSU(2) Kondo lattice model in one dimension. We show that, at quarter filling, the system can exist in two phases depending on the coupling strength. The weak-coupling phase is dominated by RKKY exchange correlations, while the strong-coupling phase is characterized by strong antiferromagnetic correlations of the channel degree of freedom. These two phases are separated by a quantum critical point. For conduction-band fillings of less than one-quarter, we find a paramagnetic metallic phase at weak coupling and a ferromagnetic phase at moderate to strong coupling.  相似文献   

5.
A Wigner crystal structure of the electronic ground state is induced by strong Coulomb interactions at low temperature in clean or disordered two-dimensional (2d) samples. For fermions on a mesoscopic disordered 2d lattice, being closed to a torus, we study the persistent current in the regime of strong interaction at zero temperature. We perform a perturbation expansion starting from the Wigner crystal limit which yields power laws for the dependence of the persistent current on the interaction strength. The sign of the persistent current in the strong interaction limit is independent of the disorder realization and strength. It depends only on the electro-statically determined configuration of the particles in the Wigner crystal. Received 14 March 2000  相似文献   

6.
The melting of a Wigner Crystal of electrons placed into a host polar material is examined as a function of the density and the temperature. When the coupling to the longitudinal optical modes of the host medium is turned on, the WC is progressively transformed into a polaronic Wigner crystal. We estimate the critical density for crystal melting at zero temperature using the Lindeman criterion. We show that above a certain critical value of the Fr?hlich electron-phonon coupling, the melting towards a quantum liquid of polarons is not possible, and the insulator-to-metal transition is driven by the ionization of the polarons (polaron dissociation). The phase diagram at finite temperature is obtained by making use of the same Lindeman criterion. Results are also provided in the case of an anisotropic electron band mass, showing that the scenario of polaron dissociation can be relevant in anisotropic compounds such as the superconducting cuprates at rather moderate e-ph couplings. Received 13 August 1999  相似文献   

7.
A floating Wigner crystal differs from the standard one by a spatial averaging over positions of the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes into account rotational and/or translational symmetry of the underlying jellium background. We study properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due to degenerate ground states and inter-dot Coulomb coupling. Received 12 September 2001 / Received in final form 24 April 2002 Published online 9 July 2002  相似文献   

8.
We investigate the spin-orbit coupling effect in a two-dimensional(2D)Wigner crystal.It is shown that sufficiently strong spin-orbit coupling and an appropriate sign of g-factor could transform the Wigner crystal to a topological phonon system.We demonstrate the existence of chiral phonon edge modes in finite size samples,as well as the robustness of the modes in the topological phase.We explore the possibility of realizing the topological phonon system in 2D Wigner crystals confined in semiconductor quantum wells/heterostructure.It is found that the spin-orbit coupling is too weak for driving a topological phase transition in these systems.It is argued that one may look for topological phonon systems in correlated Wigner crystals with emergent effective spin-orbit coupling.  相似文献   

9.
We study interacting GaAs hole bilayers in the limit of zero interlayer tunneling. When the layers have equal density, we observe a phase-coherent bilayer quantum Hall state (QHS) at a total filling factor nu=1, flanked by a reentrant insulating phase at nearby fillings which suggests the formation of a pinned, bilayer Wigner crystal. As we transfer charge from one layer to another, the phase-coherent QHS becomes stronger, evincing its robustness against charge imbalance, but the insulating phase disappears, suggesting that its stability requires the commensurability of the two layers.  相似文献   

10.
We calculate the restricted phase diagram for the Falicov–Kimball model on a two-dimensional square lattice. We consider the limit where the average conduction electron density is equal to the average localized electron density, which is the limit related to the S z =0 states of the Hubbard model. After considering over 20,000 different candidate phases (with a unit cell of 16 sites or less) and their thermodynamic mixtures, we find only about 100 stable phases in the ground-state phase diagram, where the ground state is usually the phase separated mixture of two or three stable phases, that often have different electron densities than in the Maxwell-constructed mixture. We analyze these phases to describe where stripe phases occur and relate these discoveries (were appropriate) to the physics behind stripe formation in the Hubbard model.  相似文献   

11.
The destruction of quasi-long-range crystalline order as a consequence of strong disorder effects is shown to accompany the strict localization of all classical plasma modes of one-dimensional Wigner crystals at T=0. We construct a phase diagram that relates the structural phase properties of Wigner crystals to a plasmon delocalization transition recently reported. Deep inside the strictly localized phase of the strong disorder regime, we observe glasslike behavior. However, well into the critical phase with a plasmon mobility edge, the system retains its crystalline composition. We predict that a transition between the two phases occurs at a critical value of the relative disorder strength. This transition has an experimental signature in the ac conductivity as a local maximum of the largest spectral amplitude as a function of the relative disorder strength.  相似文献   

12.
In this paper we attempt a non-perturbative study of the five-dimensional, anisotropic SU(2) gauge theory on the lattice using Monte Carlo techniques. Our goal is the exploration of the phase diagram, defining the various phases and the critical boundary lines. Three phases appear, two of them are continuations of the Strong and the Weak coupling phases of pure 4d SU(2) to non-zero coupling ββ in the fifth transverse direction and they are separated by a crossover transition, while the third phase is a 5D Coulombic phase. We provide evidence that the phase transition between the 5D Coulomb phase and the Weak coupling phase is a second order phase transition. Assuming that this result is not altered when increasing the lattice volume we give a first estimate of the associated critical exponents. This opens the possibility for a continuum effective five-dimensional field theory.  相似文献   

13.
We have studied the magnetodielectric response of Y2Cu2O5, the so-called blue phase in the Y2O3-CuO-BaO phase diagram. Based on symmetry principles, we predict and demonstrate magneto-dielectric coupling on a single crystal sample. We report an anomaly in the dielectric constant at the ordering temperature of the Cu spins. We probe the magnetic field-induced phase transitions between four different magnetic phases using magneto-capacitance measurements, demonstrating relatively strong magnetodielectric coupling. We observe an increase in dielectric constant in the spin-flip phase where there exists spontaneous magnetization. We construct a detailed magnetic phase diagram. The magnetodielectric coupling is analyzed in terms of striction induced by symmetric superexchange and optical phonon frequency shifts.  相似文献   

14.
Results for the static part of the ground state energy of the square and hexagonal two-dimensional Wigner lattices are given. The hexagonal lattice has the lower energy. Phonon dispersion curves and the vibrational zeropoint energy are calculated for the hexagonal lattice. The dielectric susceptibility tensor of a two-dimensional Wigner crystal χαβ(q) has been determined in the long wavelength limit in the presence of a static magnetic field perpendicular to the crystal, and explicit expressions have been obtained for the hexagonal lattice. Applying the analysis developed by Chiu and Quinn, the results for the susceptibility have been used to obtain the dispersion relation for the plasma oscillations in the electron crystal on the assumption that the crystal is embedded in a dielectric medium. The dispersion curves have been calculated for differing magnitudes of the applied magnetic field.  相似文献   

15.
陈基  冯页新  李新征  王恩哥 《物理学报》2015,64(18):183101-183101
在相图研究中, 严格计算一个真实系统在特定温度、压强下的自由能是近年来该领域理论方法发展的前沿. 自Mermin提出有限温度密度泛函理论后, 在电子结构层面, 弱关联系统中人们就其在对自由能贡献的描述已相对完善, 但在原子核运动的描述上, 热运动与量子运动的非简谐项却总被忽视. 本文将路径积分分子动力学与热力学积分结合, 对300 GPa下氢晶体Cmca 结构中原子核热涨落与量子涨落对自由能的影响进行了分析. 发现在100 K核量子涨落非简谐项的贡献约为15 meV每原子, 远大于不同结构间静态焓的差别. 该研究提醒人们简谐近似在核量子效应描述中可能存在的不准确性(即使在低温下). 同时, 我们采取的方法 也为人们进行自由能的准确计算提供了一个简单有效的手段.  相似文献   

16.
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram.  相似文献   

17.
《中国物理 B》2021,30(6):67304-067304
We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.  相似文献   

18.
The spontaneous interlayer phase coherent (111) state of a bilayer quantum Hall system at filling factor nu = 1 may be viewed as a condensate of interlayer particle-hole pairs or excitons. We show that when the layers are biased in such a way that these excitons are very dilute, they may be viewed as pointlike bosons. We calculate the exciton dispersion relation and show that the exciton-exciton interaction is dominated by the dipole moment they carry. In addition to the phase coherent state, we also find a Wigner crystal/glass phase in the presence/absence of disorder which is an insulating state for the excitons. The position of the phase boundary is estimated and the transition between these two phases is discussed.  相似文献   

19.
We consider the instability of a two-dimensional Wigner crystal in a short-period lateral superlattice. To find instabilities, we calculate the phonon spectrum of the electron lattice deformed by a periodic potential. We show that one of the transverse modes of the deformed electron crystal becomes soft when the electron density exceeds a critical value. This can result in a phase transition with the formation of a charge-density wave.  相似文献   

20.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号