首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
空间等离子体在有些情形下,并非单麦克斯韦分布,而是双麦克斯韦分布。为了研究双麦克斯韦分布等离子体对航天器表面的充电效应,基于等离子体动理学理论,建立表面充电平衡方程,综合考虑双麦克斯韦分布等离子体的粒子参数、航天器的单位电容、二次电子发射及光照等因素,得出了双麦克斯韦分布等离子体对航天器表面充电电位的计算表达式,给出了表面充电电位随时间的变化规律。研究结果表明:当等离子体为双麦克斯韦分布时,航天器表面充电电位低于单麦克斯韦分布等离子体环境下的表面充电电位,单麦克斯韦分布的等离子体假设会过高估计航天器表面的充电效应;双麦克斯韦分布的第二分布函数中,对最终的表面充电平衡电位影响较大的主要是离子成分;双麦克斯韦分布等离子体的粒子数密度或温度越高,则表面充电达到平衡所需的时间越长;单位电容仅影响表面充电电位达到稳定所需的时间,对最终的充电平衡电位值影响不大。  相似文献   

2.
Using kinetic theory approach, the dispersion relation ωr and Landau damping rate γ for dust ion acoustic waves are investigated numerically and analytically in an unmagnetized collisionless dusty plasma considering Cairns distribution for electrons and ions in stationary dust particles background. The phase velocity and Landau damping rate are calculated in the limits vtd∥ < vti∥ << ω/k << vte∥ . The electrons and ions non-thermality effects are incorporated via the non-thermality parameter (0 ≤ α < 1) . The real frequency ωr and Landau damping rate γ of the mode in Cairns bi-Maxwellian distributed plasma are graphically shown to depend on plasma parameters namely non-thermality index α , ion to electron temperature ratio Ti∥/Te∥ and the dust concentration parameter δ (=1 − ηZd) .  相似文献   

3.
The Vlasov kinetic equation is solved using gyrokinetic theory and the dielectric tensor for non-relativistic, magnetized, bi-Maxwellian plasmas is calculated. A generalized dispersion relation for kinetic Alfven waves is derived taking into account the density inhomogeneity and temperature anisotropy. The modified dispersion relation thus obtained is then used to examine the propagation characteristics of the kinetic Alfven waves in the inertial regime. The importance of density inhomogeneity and temperature anisotropy for Solar corona is highlighted. The growth rate of the inertial Alfven wave proves that density inhomogeneity acts as a source of free energy.  相似文献   

4.
The filamentation instability is one of the basic beam-plasma instabilities that play a significant role in the energy deposition mechanism of the relativistic electrons generated by the laser-plasma interaction in the fast ignition scenario. In this paper, the effect of the density gradient into plasma on the filamentation instability was investigated in the Weibel unstable plasma, where the plasma temperature anisotropy can play an important role. Results indicated that the density gradient enhances the instability growth rate so that decreasing the density gradient from the critical surface to the core of fuel leads to instability for longer regions in k space. Also, investigations in the region close to the critical surface showed that for decreasing the beam number density nb ≤ 0.01n0, the instability occurs for while this can be different for higher values. Increasing the beam relativistic factor causes a decreasing peak of instability growth rate because of a reduction in beam current, whereas the initial thermal spread of plasma amplifies the filamentation instability.  相似文献   

5.
The Weibel instability plays an important role in stopping hot electrons and energy deposition mechanism in fast ignition of inertial fusion process. In this paper, the ion Weibel instability in counter propagating electron‐ion plasmas is investigate. The obtained results show that the growth rate of Weibel instability will be decreased about 40% with the anisotropy velocity as vxe = 2vze = 20; the ion density ratio, b = n 0i 1/n 0i 2, and density gradient, are increasing 50 and 90% respectively. The ion streaming in density gradient of dense plasma leads to increasing the Weibel instability growth rate and its amplification through ion streaming in the large wavenumber. The maximum unstable wavenumber has been decreased with decreasing the ion beam density ratio. For fixed ion density ratio, increasing 90% of the density gradient in the near of fuel plasma corona leads to reducing growth rate and unstable wavenumber about 43 and 42% respectively.  相似文献   

6.
The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows,which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic(CH) foils with 1ns-pulsed laser beams of total energy of 1.7 k J in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.  相似文献   

7.
Vishnu M Bannur 《Pramana》2001,57(4):755-761
We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25c and in the other limit electroweak unstable mode takes over.  相似文献   

8.
应用二、三维相对论电磁粒子模拟程序研究双电子束流在无碰撞等离子体中传播引起的横向 电磁(Weibel类型)不稳定性和纵向静电不稳定性的发展演化过程.讨论了纯粹Weibel不稳定 性的发生和非线性饱和过程,观察到电流束合并、磁场重联等引起的电子横向加热现象.研 究了电流束传播方向激发的静电场对快电子束传播的影响,观察到其导致的束的横向调制、 磁场通道破坏现象.对这些过程的细致研究对更好的理解快点火物理中自生磁场的产生、快 电子输运等过程有重要意义.  相似文献   

9.
B P Pandey  G S Lakhina 《Pramana》1998,50(2):191-204
A self consistent formulation of the Jeans instability of a dusty plasma with proper inclusion of charge dynamics is described. It is shown that charge fluctuations significantly affect the Jeans as well as the Buneman mode. For plasma particles (electrons and ions) in local thermal equilibrium, the Jeans lengthλ J is given byλ Jλ g F(R, ε, β/η), whereλ g is the Debye length of the charged grains,R is the square of the ratio of the Jeans to the plasma frequency of the grains,ε is the square of the ratio of the Debye length of the grains and the plasma particles andβ/η is the ratio of the attachment to the decay frequency of the electronic charges to the grain surface. The functional form ofF is given in the text. Numerical investigation of the Jeans-Buneman mode for a two and three component plasma shows that the Jeans mode dominates at D≪1 (wherek is the wave number andλ D is the Debye length of plasma particles), whereas at D≫1 only the Buneman mode operates. Charge fluctuations reduce the area of overlap of the two modes. Furthermore, in the absence of gravity, there exists a new, charge fluctuation induced unstable mode in a streaming dusty plasma. Astrophysical applications of the results are discussed.  相似文献   

10.
The collisional current-filamentation instability (CFI) is studied for a nonrelativistic electron beam penetrating an infinite uniform plasma. It is analytically shown that the CFI is driven by the drift-anisotropy rather than the classical anisotropy of the beam and the background plasma. Therefore, collisional effects can either attenuate or enhance the CFI depending on the drift-anisotropy of the beam-plasma system. Numerical results are given for some typical parameters, which show that collisional effects cannot stabilize but enhance the CFI in a dense plasma. Thus, the CFI may play a dominant role in the fast electron transport and deposition relevant to the fast ignition scenario (FIS).  相似文献   

11.
郝彪  盛政明  张杰 《中国物理 C》2009,33(Z2):171-174
The collisional current-filamentation instability (CFI) is studied for a nonrelativistic electron beam penetrating an infinite uniform plasma. It is analytically shown that the CFI is driven by the drift-anisotropy rather than the classical anisotropy of the beam and the background plasma. Therefore, collisional effects can either attenuate or enhance the CFI depending on the drift-anisotropy of the beam-plasma system. Numerical results are given for some typical parameters, which show that collisional effects cannot stabilize but enhance the CFI in a dense plasma. Thus, the CFI may play a dominant role in the fast electron transport and deposition relevant to the fast ignition scenario (FIS).  相似文献   

12.
The presence of Weibel instability in laser-irradiated fuel could be detrimental to the process of ablative implosion, which is necessary for achieving thermonuclear fusion reactions. In this paper, the effect of the Coulomb collisional within the turbulent plasma on the Weibel instability growth rate has been investigated for linear and circular polarization. The results indicate that the Weibel instability growth rate at circular polarization near the ignition centre of the fuel fusion (collisional plasma) is about 105 times higher than the collisional Weibel instability growth rate at linear polarization. The Weibel instability growth rate is observed near the critical density of the fuel fusion (collisionless plasma) at linear polarization and enhancement near the foot of the heat in front of the fuel fusion. By increasing the steps of the density gradient plasma in the low-density corona, electromagnetic instability occurs at a higher stress flow. Therefore, the deposition condition of electron beam energy in circular polarization of turbulent plasma can be shifted to the fuel core for suitable ignition.  相似文献   

13.
刘迎  陈志华  郑纯 《物理学报》2019,68(3):35201-035201
利用corner transport upwind和constrained transport算法求解非理想磁流体动力学方程组,对匀强平行磁场作用下,黏性各向异性等离子体自由剪切层中的Kelvin-Helmholtz不稳定性进行了数值模拟.从流动结构、涡结构演化、磁场分布、横向磁压力、抗弯磁张力等角度对各向同性和各向异性黏性算例结果进行了讨论,分析了黏性各向异性对Kelvin-Helmholtz不稳定性的影响.结果表明,黏性各向异性比黏性各向同性更利于流动的稳定.其稳定性作用是由于磁感线方向上剪切速率降低导致界面卷起程度和圈数的降低,并使卷起结构中小涡产生增殖、合并,破坏了涡的常规增长,从而导致流动的稳定.黏性各向异性对横向磁压力的影响比对抗弯磁张力更大.  相似文献   

14.
The Kelvin-Helmholtz instability in sheared magnetohydrodynamic flow of an ideally conducting rotating inhomogeneous compressible plasma is investigated. The asymptotic behaviour inx of the Kelvin-Helmholtz eigenfunctions for the case of finite compressibility in the presence of rotation is discussed and instability condition is derived. In the incompressible limit, a dispersion relation is derived which has been solved numerically and discussed in detail. It is found that the inhomogeneous system is unstable in an incompressible plasma.  相似文献   

15.
The possibility of the excitation of impact-ionized electron-hole plasma oscillatory instability in GaAs with frequency up to 1012 Hz is shown. The linear and nonlinear stages of the instability are investigated.  相似文献   

16.
李鹏飞  陈中华 《中国物理 B》2010,19(2):27503-027503
This paper numerically investigates the magnetoelastic instability in the S = 1/2 {XXZ} rings containing finite spins N with antiferromagnetic nearest-neighbour ({NN}) and next-nearest neighbour ({NNN}) coupling. It finds that, as the {NN} anisotropy Δ1 equals the {NNN} anisotropy \varDelta2, there exists a critical {NNN} coupling strength J2c(≈0.5), at which the systems always locate in dimerized phase for arbitrary large spring constant. As Δ1 \ne Δ2, the values of J2^{\rm c} are dependent on N and the difference of (Δ1-\varDelta2).  相似文献   

17.
薛具奎  段文山  郎和 《中国物理》2002,11(11):1184-1187
Using the standard reductive perturbation technique,a nonlinear Schroedinger equation is derived to study the modulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma.It is found that the inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the soliton stuctures.The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties are inestigated in detail.  相似文献   

18.
Study of dust ion acoustic waves in a magnetized dusty plasmas composed of negatively or positively charged static dust, positive and negative ions, as well as kappa distribution electrons is presented. The Zakharov–Kuznetsov (ZK) equation is derived via reductive perturbation technique. The solitary wave solution of ZK equation is given and the multi-dimensional instability of these solitary waves is investigated via small k perturbation method. The instability criterion and growth rate relying on obliqueness, superthermality, positive ion thermal pressure, relative ion number density, magnetic field strength, and direction cosines are discussed for five cases. The results are beneficial to understand different nonlinear characteristics of unstable electrostatic disturbances in laboratory and space plasmas.  相似文献   

19.
Collisions of two degenerate quark Fermi liquids are studied. It is shown that there arise instabilities, which manifest themselves in propagation of growing oscillations corresponding to the modes existing in a Fermi liquid at rest. Quark jets are likely to appear in the directions of the growing oscillations propagation.

The instabilities studied in this work are similar to the beam instability in ordinary electron plasma.  相似文献   


20.
Saroj K Majumdar 《Pramana》1984,23(6):785-801
The nonlinear distribution function of Allis, generalised to include the transverse electromagnetic waves in a plasma, is used to set up the coupled wave equations for the longitudinal and the transverse modes. These are solved, keeping terms up to the cubic order of nonlinearity, by using the method of multiple scales. The equations of wave modulation are derived, which are solved to discuss the nature of the modulational instability and solitary wave propagation. It is found that the solutions so obtained satisfy conditions which are very similar to the well known Lighthill criterion for stability, appropriately modified due to the coupling of the two modes. The role of the average constant current due to any flow of the resonant and trapped electrons in determining the stability, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号