首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reconnection of two singularities in 2D, 3D, and 4D classical and quantum turbulence is examined. Singularity reconnection plays an essential role in the dissipation of the incompressible part of kinetic energy. A reconnection condition 2(ds+1)≥d+1 is derived, which crucially depends on the dimension ds of the singular structure in relation to the spatial dimension d of the system. The feasibility of this condition is examined using direct numerical simulations of the Navier-Stokes and Gross-Pitaevskii equations for the classical and quantum turbulence, respectively. We observed that the condition was satisfied for d=3 and 4, in agreement with the occurrence of energy cascades in both classical and quantum turbulence in those dimensions.  相似文献   

2.
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.  相似文献   

3.
We study the three-dimensional forced-dissipated Gross-Pitaevskii equation. We force at relatively low wave numbers, expecting to observe a direct energy cascade and a consequent power-law spectrum of the form kα. Our numerical results show that the exponent α strongly depends on how the inverse particle cascade is attenuated at ks lower than the forcing wave-number. If the inverse cascade is arrested by a friction at low ks, we observe an exponent which is in good agreement with the weak wave turbulence prediction k−1. For a hypo-viscosity, a k−2 spectrum is observed which we explain using a critical balance argument. In simulations without any low k dissipation, a condensate at k=0 is growing and the system goes through a strongly turbulent transition from a 4-wave to a 3-wave weak turbulence acoustic regime with evidence of k−3/2 Zakharov-Sagdeev spectrum. In this regime, we also observe a spectrum for the incompressible kinetic energy which formally resembles the Kolmogorov k−5/3, but whose correct explanation should be in terms of the Kelvin wave turbulence. The probability density functions for the velocities and the densities are also discussed.  相似文献   

4.
A relation between quantum R-matrices and certain factorization problem in Hopf algebras is established. A definition of dressinf transformation in the quantum case is also given.  相似文献   

5.
Quantum hydrodynamics in superfluid helium and atomic Bose–Einstein condensates (BECs) has been recently one of the most important topics in low temperature physics. In these systems, a macroscopic wave function (order parameter) appears because of Bose–Einstein condensation, which creates quantized vortices. Turbulence consisting of quantized vortices is called quantum turbulence (QT). The study of quantized vortices and QT has increased in intensity for two reasons. The first is that recent studies of QT are considerably advanced over older studies, which were chiefly limited to thermal counterflow in 44He, which has no analog with classical traditional turbulence, whereas new studies on QT are focused on a comparison between QT and classical turbulence. The second reason is the realization of atomic BECs in 1995, for which modern optical techniques enable the direct control and visualization of the condensate and can even change the interaction; such direct control is impossible in other quantum condensates like superfluid helium and superconductors. Our group has made many important theoretical and numerical contributions to the field of quantum hydrodynamics of both superfluid helium and atomic BECs. In this article, we review some of the important topics in detail. The topics of quantum hydrodynamics are diverse, so we have not attempted to cover all these topics in this article. We also ensure that the scope of this article does not overlap with our recent review article (arXiv:1004.5458), “Quantized vortices in superfluid helium and atomic Bose–Einstein condensates”, and other review articles.  相似文献   

6.
The velocity increments statistic in various turbulent flows is analysed through the hypothesis that different scales are linked by a multiplicative process, of which multiplier is infinitely divisible. This generalisation of the Kolmogorov-Obukhov theory is compatible with the finite Reynolds number value of real flows, thus ensuring safe extrapolation to the infinite Reynolds limit. It exhibits a estimator universally depending on the Reynolds number of the flow, with the same law either for Direct Numerical Simulations or experiments, both for transverse and longitudinal increments. As an application of this result, the inverse dependence is used to define an unbiased value for a Large Eddy Simulation from the resolved scales velocity statistics. However, the exact shape of the multiplicative process, though independent of the Reynolds number for a given experimental setup, is found to depend significantly on this setup and on the nature of the increment, longitudinal or transverse. The asymmetry of longitudinal velocity increments probability density functions exhibits similarly a dependence with the experimental setup, but also systematically depends on the Reynolds number. Received 7 January 2000 and Received in final form 17 March 2000  相似文献   

7.
Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in this novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion-pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.  相似文献   

8.
A novel hybrid numerical scheme with built-in hyperviscosity has been developed to address the accuracy and numerical instability in numerical simulation of isotropic compressible turbulence in a periodic domain at high turbulent Mach number. The hybrid scheme utilizes a 7th-order WENO (Weighted Essentially Non-Oscillatory) scheme for highly compressive regions (i.e., shocklet regions) and an 8th-order compact central finite difference scheme for smooth regions outside shocklets. A flux-based conservative and formally consistent formulation is developed to optimize the connection between the two schemes at the interface and to achieve a higher computational efficiency. In addition, a novel numerical hyperviscosity formulation is proposed within the context of compact finite difference scheme for the smooth regions to improve numerical stability of the hybrid method. A thorough and insightful analysis of the hyperviscosity formulation in both Fourier space and physical space is presented to show the effectiveness of the formulation in improving numerical stability, without compromising the accuracy of the hybrid method. A conservative implementation of the hyperviscosity formulation is also developed. Combining the analysis and test simulations, we have also developed a criterion to guide the specification of a numerical hyperviscosity coefficient (the only adjustable coefficient in the formulation). A series of test simulations are used to demonstrate the accuracy and numerical stability of the scheme for both decaying and forced compressible turbulence. Preliminary results for a high-resolution simulation at turbulent Mach number of 1.08 are shown. The sensitivity of the simulated flow to the detail of thermal forcing method is also briefly discussed.  相似文献   

9.
Duality Quantum Computers and Quantum Operations   总被引:1,自引:0,他引:1  
We present a mathematical theory for a new type of quantum computer called a duality quantum computer that is similar to one that has recently been proposed. We discuss the nonunitarity of certain circuits of a duality quantum computer. We then discuss the relevance of this work to quantum operations and their convexity theory. This discussion is based upon isomorphism theorems for completely positive maps.  相似文献   

10.
T. Iida  M. Tsubota 《Phase Transitions》2013,86(7-8):961-969
One of the best ways to obtain unambiguous experimental evidence for the superfluidity of excitons is to observe phenomena that are directly related to the phase of the condensed excitons. As an advantageous candidate for this purpose, we propose a quasi-two-dimensional exciton system in type-II quantum wells (QWs). We consider the condensed excitons in the type-II QW irradiated by a weak laser light and show that under the control of an external current J ex , the system takes the ordered state with (without) net superflow of excitons at T = 0 K when J ex is larger (smaller) than a certain critical value. Introducing probable mechanisms of phase transitions, we calculate the transition temperatures and construct the phase diagram.  相似文献   

11.
1IntroductionDirectnumericalsimulation(DNS)becomesanimportanttoolinrecentresearchofturbulence[1].DNSofcompressibleturbulenceismoredifficultthanthatoftheincompressibleturbulence.WhentheturbulentMachnumberisgreaterthan0.3theshockletsmayappearinthecompressibleturbulentflowfields.Thereasonandmechanismofshockletsexistencearenotclearyet.TheturbulentMachnumberinDNScannotbeveryhighwiththepresentexistingnumericalmethodsandcomputerresource.Fortheproblemofcompressibleisotropicturbulencewiththeinitia…  相似文献   

12.
We investigate the global chirality distribution of the quantum walk on the line when decoherence is introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. The first mechanism drives the system towards a classical diffusive behavior. This is used to build new quantum games, similar to the spin-flip game. The second mechanism involves two different possibilities: (a) All the quantum walk links have the same probability of being broken. (b) Only the quantum walk links on a half-line are affected by random breakage. In case (a) the decoherence drives the system to a classical Markov process, whose master equation is equivalent to the dynamical equation of the quantum density matrix. This is not the case in (b) where the asymptotic global chirality distribution unexpectedly maintains some dependence with the initial condition. Explicit analytical equations are obtained for all cases.  相似文献   

13.
程知  谭逢富  靖旭  何枫  侯再红 《物理学报》2016,65(7):74205-074205
根据cross-path理论, 推导出弱起伏条件下差分孔径光强起伏结构函数的精确表达式, 以此为依据, 从理论上提出测量大气湍流强度的双孔差分闪烁法. 在Kolmogorov湍流谱条件下, 分析了信标光直径和信标光高度对该方法中路径权重函数的影响. 在近地面开展了2 km路径的水平光单程传输实验, 将双孔差分闪烁法和单孔闪烁法的测量结果进行了对比. 实验结果表明: 在不同的天气条件和大气湍流状况下, 两种方法测量的折射率结构常数具有高度的一致性; 通过对折射率结构常数积分得到的球面波大气相干长度进行相关性分析, 发现两者的线性相关系数达0.96; 由此验证了双孔差分闪烁法的可行性和有效性. 该方法能够分离出主动信标双程传输的后向闪烁信息, 为主动信标准确探测大气湍流提供了一种新方法.  相似文献   

14.
15.
Inspired by Ying’s work on automata theory based on quantum logic and classical automata theory, we introduce the concepts of reversal, accessible, coaccessible and complete part of finite state automata based on quantum logic. Some properties of them are discussed. More importantly we investigate the recognizability and accessibility properties of these types on the framework of quantum logic by employing the approach of semantic analysis. Foundation: supported by the National Natural Science Foundation of China (No. 10671030).  相似文献   

16.
本文采用非含时动力学方法计算了Ar-HF体系纯转动和振转传能的量子态分辨的积分截面和速率常数. 与以往所报道的理论值相比,本文计算的纯转动积分截面结果与实验值更吻合. 对于振动弛豫过程,近共振传能占主导地位. 进一步的计算表明,振动态分辨的v=1→v''=1的传能速率常数在100 K至1500 K温度范围内迅速升高,并且计算值与实验值相符很好.  相似文献   

17.
If the states of spins in solids can be created, manipulated, and measured at the single-quantum level, an entirely new form of information processing, quantum computing, will be possible. We first give an overview of quantum information processing, showing that the famous Shor speedup of integer factoring is just one of a host of important applications for qubits, including cryptography, counterfeit protection, channel capacity enhancement, distributed computing, and others. We review our proposed spin-quantum dot architecture for a quantum computer, and we indicate a variety of first generation materials, optical, and electrical measurements which should be considered. We analyze the efficiency of a two-dot device as a transmitter of quantum information via the propagation of qubit carriers (i.e. electrons) in a Fermi sea.  相似文献   

18.
An overview is presented of the phase changes as well as certain relaxation characteristics of model quantum magnets, magnetic glasses and proton glasses. Although the systems considered are quite varied, they are connected by the common themes of tunneling, transverse Ising model, long-ranged interactions and above all, the occurrence of quantum phase transitions. Because the interactions are long-ranged, mean-field theory is eminently suitable for analyzing both the equilibrium and nonequilibrium properties. Wherever pertinent, detailed comparisons with experimental data have been presented.  相似文献   

19.
The use of Einstein-Podolsky-Rosen (EPR) correlated microparticles for telecommunication purposes is considered from a new point of view. In spite of the fact that the usual nonlocality of EPR pairs is not controllable, the use of irreversible quantum systems opens new possibilities. A concrete scheme for a controllable correlated quantum system is considered. It might be used for non-wave-type communication over not very large distances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号