共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》2014,378(30-31):2217-2221
By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias. 相似文献
2.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR–H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I–V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I–V characteristic of O/ZGNR–H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices. 相似文献
3.
A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90–220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier–Stark ladder) with larger thicknesses of barrier when the applied voltage increases. 相似文献
4.
Sitangshu Bhattacharya 《Physics letters. A》2010,374(28):2850-2855
We present a simplified theory of the effective momentum mass (EMM) and ballistic current-voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case. 相似文献
5.
Wei-Hua Xiao Fang Xie Xiao-Jiao Zhang Yu-Fang Chu Jian-Ping Liu Hai-Yan Wang Zhi-Qiang Fan Meng-Qiu Long Ke-Qiu Chen 《Physics letters. A》2019,383(14):1629-1635
We have studied the electronic structures of arsenene nanoribbons with different edge passivations by employing first-principle calculations. Furthermore, the effects of the defect in different positions on the transport properties of arsenene nanoribbons are also investigated. We find that the band structures of arsenene nanoribbons are sensitive to the edge passivation. The current-voltage characteristics of unpassivated and O-passivated zigzag arsenene nanoribbons exhibit a negative differential resistance behavior, while such a peculiar phenomenon has not emerged in the unpassivated and O-passivated armchair arsenene nanoribbons. The vacant defects on both top and bottom edges in unpassivated armchair arsenene nanoribbon can make its current-voltage characteristic also present a negative differential resistance behavior. After expanding the areas of the top and bottom defects in unpassivated armchair arsenene nanoribbon, the peak-to-valley ratio of the negative differential resistance behavior can be enlarged obviously, which opens another way for the application of arsenene-based devices with a high switching ratio. 相似文献
6.
Using the first-principle calculations, we investigate the spin-dependent transport properties of Fe-substituted zigzag graphene nanoribbons (ZGNRs). The substituted ZGNRs with single or double Fe atoms, distributing symmetrically or asymmetrically on both edges, are considered. Our results show Fe-substitution can significantly change electronic transport of ZGNRs, and the spin-filter effect and negative differential resistance (NDR) can be observed. We propose that the distribution of the electronic spin-states of ZGNRs can be modulated by the substituted Fe and results in the spin-polarization, and meanwhile the change of the delocalization of the frontier molecular orbitals at different bias may be responsible for the NDR behavior. 相似文献
7.
We study the electron transport properties of graphene anti-dot and periodic graphene anti-dot arrays using the nonequilibrium Green?s function method and Landauer–Büttiker formula. Fano resonant peaks are observed in the vicinity of Fermi energy, because discrete states coexist with continuum energy states. These peaks move closer to Fermi energy with increasing the width of anti-dots, but move away from the Fermi energy with increasing the length of anti-dots. When N periodic anti-dots exist in the longitude direction, a rapid fluctuation appears in the conductance with varying resonance peaks, which is mainly from the local resonances created by quasibound state. When P periodic anti-dots exist in the transverse direction, P-fold resonant splitting peaks are observed around the Fermi energy, owing to the symmetric and antisymmetric superposition of quasibound states. 相似文献
8.
Somayeh Fotoohi 《Physics letters. A》2019,383(4):369-375
By using first-principles calculations based on density functional theory and non-equilibrium Green's function, we present the electronic transport properties of two kinds of devices based on armchair phosphorene nanoribbons, namely, A device, and B device. In A device, the phosphorus atoms in the center of armchair phosphorene nanoribbon have been replaced by impurity atoms of the S and Si, whereas in the B device, the impurity atoms are at the edge of ribbon. The results show that the current–voltage characteristics for both devices have striking nonlinear features and the rectifying behaviors strongly depend on the positions of impurity atoms. The highest rectification ratio is obtained about 125992 at 0.8 V bias for B device. Moreover, only for A device, robust negative differential resistance is observed with a high peak–valley ratio 27500 in the bias range . The mechanism of the rectification behavior is analyzed in terms of the evolution of energy levels of the related electrodes and transmission spectra as well as the projected self-consistent Hamiltonian eigenvalues with the applied bias voltage. The results indicate that the asymmetric doping of the impurity atoms can lead to a robust rectification which can be utilized to design phosphorene-base rectifier with good performance. 相似文献
9.
Huan-Yan Fu Feng Sun Ran Liu Yu-Qing Suo Jun-Jie Bi Chuan-Kui Wang Zong-Liang Li 《Physics letters. A》2019,383(9):867-872
By p-type and n-type doping on the electrode edges of V-notched zigzag graphene nano-ribbons (ZGNRs), four V-notched ZGNR-based PN-junctions are designed theoretically. The electronic transport properties of the doped and un-doped V-notched ZGNRs are studied applying non-equilibrium Green's function method combined with the density functional theory. The numerical results show that, the doped systems are less conductive than the un-doped system, because after doping the transition states become localized. To our surprise, the ZGNR-based PN-junctions do not show obvious rectification by purely doping the boron atoms and nitrogen atoms on the edges of two ZGNR electrodes respectively. However, after hydrogenated the doped boron atoms and nitrogen atoms, the ZGNR systems present giant rectifications with the maximum rectification ratios up to , which attributed to the vanishing of overlap between left-electrode sub-band and right-electrode sub-band in the negative bias regime after the doped boron and nitrogen atoms being hydrogenated. Due to the same reason, the hydrogenated doping systems also show large negative differential conductance behaviors. 相似文献
10.
Using non-equilibrium Green׳s function and ab initio calculations we investigate structural, electronic, and transport properties of a junction consisting of armchair hexagonal boron phosphide nanoribbon (ABPNR) contacted by two semi-infinite electrodes composed of armchair graphene nanoribbons (AGNRs). We consider three different configurations including the pristine AGNR–BP–GNR and substitutions for Iron atoms, namely on phosphorus and boron atoms at one edge of the BP nanoribbon. The spin current polarization in all these cases is extracted for each structure and bias. Such hybrid system is found to exhibit not only significant spin-filter efficiency (SFE) but also tunable negative differential resistance (NDR). 相似文献
11.
12.
We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. 相似文献
13.
In the study, an improved superconducting heterojunction is made up of a zigzag graphene nanoribbon, which is patterned by a triangle and supports localized edge mode. Since all the localized edge modes stem from a pattern operation, the structure features of the pattern exert an enormous function on the coherent quantum transport. Especially, the patterned modes can enhance the Andreev reflection largely both in the ferromagnetic nanoribbon edge and the antiferromagnetic nanoribbon edge. The spin resolved zero bias conductances, in sharp contrast to its counterpart in the infinite width superconducting heterojunction, exhibit the different dependence on the patterned ferromagnetic interaction. 相似文献
14.
By applying non-equilibrium Green's function formalism combined with first-principles density functional theory, we have investigated the electronic transport properties of a carbon nanotube-based molecular junction with different terminations (H-, C- and N-). The results show that the different terminations at the carbon nanotube ends strongly affect the transport properties of the junction. The current through the N-terminated carbon nanotube junction is significant larger than that through the H- and C-terminated junctions at low biases. Moreover, negative differential resistance behaviors can be observed in the N-terminated carbon nanotube junction, whereas not in the other two cases. 相似文献
15.
Using nonequilibrium Green?s functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons. 相似文献
16.
We investigate the quantum transport through zigzag graphene nanoribbons with embedded “5-7-5”-edge line defects, by means of the non-equilibrium Green's function technique. It is found that when two semi-infinite line defects exist in the nanoribbon, notable Fano antiresonance takes place in the quantum transport process, which enables to drive the apparent thermoelectric effect. We propose this structure to be a promising candidate for improving the thermoelectric efficiency based on graphene nanoribbons. 相似文献
17.
Xiaoteng Li Dongqing Zou Bin Cui Yuan Li Mei Wang Dongmei Li Desheng Liu 《Physics letters. A》2018,382(35):2475-2483
By first-principles calculations, we propose three heterojunction nanodevices based on zigzag silicene nanoribbons with different edge-hydrogenated topological line defects. The devices all present excellent spin-filtering properties with 100% spin polarization as well as remarkable rectifying effect (with rectification ratio around 102) and negative differential resistance behaviors. Our findings shed new light on the design of silicon-based nanodevices with intriguing spintronic applications. 相似文献
18.
基于非共线磁序密度泛函/非平衡格林函数方法,研究了硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子透射系数.未掺杂的石墨烯纳米带的计算结果表明磁化分布主要遵循类似于Neel磁畴壁的螺旋式磁化分布.相比于未掺杂的情况,硼/氮掺杂的石墨烯纳米带的磁化分布出现了双区域的特征,即杂质原子附近的磁化较小,杂质原子左(右)侧区域的磁化分布更接近于左(右)电极的磁化方向,这为通过掺杂手段在石墨烯纳米带边缘上构建不同磁畴壁提供了可能性.与未掺杂的透射系数不同的是,硼/氮掺杂的石墨烯纳米带的透射系数在费米面附近随着磁化偏转角增大而减小,表明非共线磁序引起的自旋翻转散射占据主导地位.而在E=±0.65 eV处,出现了一个较宽的dip结构,投影电子态密度的分析表明其来源于杂质原子形成的束缚态所引起的背散射.我们的研究结果对于理解石墨烯纳米带中的非共线磁序与杂质散射以及器件设计具有一定的意义. 相似文献
19.
Using first-principles density functional theory and non-equilibrium Green?s function formalism for quantum transport calculation, we have investigated the electronic transport properties of the unsymmetrical C121-based molecular junction. Our results show that the current-voltage curve displays a negative differential resistance phenomenon in a certain bias voltage range. The mechanism for the negative differential resistance phenomenon is suggested. The present findings could be helpful for the application of the C121 molecule in the field of single molecular devices or nanometer electronics. 相似文献
20.
利用基于非平衡格林函数和密度泛函理论相结合的第一性原理计算方法,研究了硼氮原子取代掺杂对三并苯分子电子输运性质的影响.计算结果表明,三并苯分子器件的电流在特定偏压区间内随电压的增加而减小呈现出负微分电阻效应,电流的峰谷之比高达5.12.用硼原子或者氮原子取代分子的中心原子后,器件0.8V以内的电流明显增加,但是负微分电阻效应减弱,相应的电流峰谷比分别降至3.83和3.61.分析认为,输运系数在特定偏压下的移动是器件负微分电阻效应的主要成因.核外电子数的差异导致硼氮原子掺杂取代可以使器件轨道及其透射峰分别向高能方向或者低能方向移动从而有效地调控了器件的低偏压下的电子传输能力和负微分电阻效应. 相似文献