首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
王成杰  石发展  王鹏飞  段昌奎  杜江峰 《物理学报》2018,67(13):130701-130701
纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.  相似文献   

2.
彭世杰  刘颖  马文超  石发展  杜江峰 《物理学报》2018,67(16):167601-167601
磁是一种重要的物理现象,对其进行精密测量推动了许多科技领域的发展.各类测磁技术,包括霍尔传感器、超导量子干涉仪、自旋磁共振等,都致力于提升空间分辨率和灵敏度.近年来,金刚石中的氮-空位色心广受关注.这一固态单自旋体系具有许多优点,例如易于初始化和读出、可操控、具有较长相干时间等,这使得它不仅在量子信息、量子计算等领域崭露头角,而且在量子精密测量上显现出巨大的应用前景.基于氮-空位色心,利用动力学解耦、关联谱等技术,已实现若干高灵敏度、高分辨率的微观磁共振实验,其中包括纳米尺度乃至单分子、单自旋的核磁共振和电子顺磁共振.氮-空位色心也可以用于微波和射频信号的精密测量.本文对围绕上述主题开展的一系列研究工作进行综述.  相似文献   

3.
陈琼  冯芒  杜江峰  海文华 《中国物理 B》2011,20(1):10308-010308
The cluster state is an indispensable resource for one-way quantum computing (1WQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.  相似文献   

4.
The spin Hamiltonian method in combination with ab initio calculations of the spin characteristics of quantum registers that include an electron spin S = 1 of a single NV center in the ground electronic state and nuclear spins I = 1/2 of several atoms 13C located at different lattice sites near the vacancy of the NV center is applied to find eigenvalues and eigenfunctions of spin systems NV + n 13C for cases where the lattice sites nearest to the vacancy of the NV center contain one, two, or three 13C nuclear spins, as well as for cases where 13C atoms are located at sites more distant from the vacancy. For these single spin NV + n 13C systems, the spectra of optically detected magnetic resonance (ODMR) are calculated, which agree well with available experimental data.  相似文献   

5.
The Nitrogen Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser and manipulated by microwave pulses. It has been utilized as a ultra sensi- tive probe for magnetic fields and remote spins as well. Here, we review the recent progresses in experimental demonstrations based on NV centers. We first introduce our work on implementation of the Deutsch- Jozsa algorithm with a single electronic spin in diamond. Then the quantum nature of the bath around the center spin is revealed and continuous wave dynamical decoupling has been demonstrated. By applying dynamical decoupling, a multi-pass quantum metrology protocol is realized to enhance phase estimation. In the final, we demonstrated NV center can be regarded as a ultra-sensitive sensor spin to implement nuclear magnetic resonance (NMR) imaging at nanoscale.  相似文献   

6.
Details of the application of the spin Hamiltonian method for studying spin characteristics of a quantum register that includes an electron spin S = 1 of a single NV center in the ground electronic state and nuclear spins I = 1/2 of several isotopic atoms 13C located at different lattice sites near the vacancy of the NV center. Two methods of finding the hyperfine interaction tensors for these NV + n 13C spin systems are considered, one of which is based on the conventional electron spin resonance (ESR) method, while the other involves methods of quantum chemistry. The results of the latter method are compared with ESR data and with spectra of optically detected magnetic resonance (ODMR) and with the character of the modulation of the ODMR echo decay observed in single NV + n 13C systems. This comparison shows that the ab initio modeling of the spin characteristics of diamond nanoclusters containing NV centers makes it possible to obtain quantitative spin characteristics of the quantum registers under study.  相似文献   

7.
The entanglement between quantum memory nodes is a prerequisite in a quantum network, and the diamond nitrogen-vacancy(NV) center is a promising candidate serving as a quantum memory node. Here, we investigate the possibility of achieving an entanglement purification protocol(EPP) for entangled NV centers in distant diamonds. To construct the EPP, we design a nondestructive parity-check detector(PCD) utilizing an auxiliary polarization-entangled photon pair, which makes our EPP less time consuming and insensitive to the phase fluctuation of the optical path length. The satisfied fidelity of an NV center pair after purification and efficiency of obtaining a purified NV center pair with our EPP can be obtained with current experimental techniques in the realistic condition. This EPP is useful for a quantum network in which NV centers are used as quantum memory nodes.  相似文献   

8.
The negatively charged nitrogen-vacancy (NV(-)) center in diamond is considered to be one of the most promising solid state systems for quantum information applications. Excited states of the NV(-) center play a center role in the proposed applications. Using a combination of first-principles calculations and vibronic interaction model analysis, we establish the presence of a dynamic Jahn-Teller effect in the (3)E excited state. The calculated temperature-dependent dephasing rate for the zero phonon line as well as the splitting of the first two vibronic states are in good agreement with experiment.  相似文献   

9.
The construction of a near‐deterministic photonic hyperparallel quantum Fredkin (hyper‐Fredkin) gate is investigated for a three‐photon system with the optical property of a diamond nitrogen vacancy center embedded in an optical cavity (cavity‐NV center system). This hyper‐Fredkin gate can be used to perform double Fredkin gate operations on both the polarization and spatial‐mode degrees of freedom (DOFs) of a three‐photon system with a near‐unit success probability, compared with those on the double three‐photon systems in one DOF. In this proposal, the hybrid quantum logic gate operations are the key elements of the hyper‐Fredkin gate, and only two cavity‐NV center systems are required. Moreover, the possibility of constructing a high‐fidelity and high‐efficiency hyper‐Fredkin gate in the experimental environment of a cavity‐NV center system is discussed, which may be used to implement high‐fidelity photonic computational tasks in two DOFs with a high efficiency.  相似文献   

10.
In an effort to realize a two-bit processor for a quantum computer on the basis of single nitrogen-vacancy defect centers (NV centers) in diamond, the optically detected nutations of the electron spin of a single NV center in the ground state and of the nuclear spin of a 13C atom located at a diamond lattice site nearest to the NV center are studied. The photodynamics of NV and NV + 13C centers under different temperatures and optical excitation conditions is discussed. A seven-level model of a center excited by radiation from an Ar+ laser at room temperature is proposed. On the basis of this model, the experimental spectra of optically detected electron paramagnetic and electron-nuclear double resonances of single NV and NV + 13C centers in diamond nanocrystals, as well as experimental data on the optically detected nutations of the electron and nuclear spins of these centers caused by the actions of pulsed microwave and radiofrequency fields, respectively, are interpreted.  相似文献   

11.
The nitrogen-vacancy (NV) center in diamond is supposed to be a building block for quantum computing and nanometer-scale metrology at ambient conditions. Therefore, precise knowledge of its quantum states is crucial. Here, we experimentally show that under usual operating conditions the NV exists in an equilibrium of two charge states [70% in the expected negative (NV-) and 30% in the neutral one (NV0)]. Projective quantum nondemolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. The nuclear spin can be coherently driven also in NV0 (T1≈90 ms and T2≈6 μs).  相似文献   

12.
李雪琴  赵云芳  唐艳妮  杨卫军 《物理学报》2018,67(7):70302-070302
量子纠缠是实现量子计算和量子通信的核心基础,本文提出了在金刚石氮-空位色心(NV centers)自旋系综与超导量子电路耦合的混合系统中实现两个分离量子节点之间纠缠的理论方案.在该混合系统中,把金刚石NV centers自旋系综和与之耦合的超导共面谐振器视为一个量子节点,两个量子节点之间通过一个空的超导共面谐振器连接.具有较长相干时间的NV centers自旋系综作为一个量子存储器,用于制备、存储和发送量子信息;易于外部操控的超导量子电路可执行量子逻辑门操作,快速调控量子信息.为了实现两个分离量子节点之间的纠缠,首先对系统的哈密顿量进行正则变换,将其等价为两个NV centers自旋系综与同一个超导共面谐振器之间的JC耦合;然后采用NV centers自旋-光子混合比特编码的方式,通过调节超导共面谐振器的谐振频率,精确控制体系演化时间,高保真度地实现了两个分离量子节点之间的量子纠缠.本方案还可以进一步扩展和集成,用于构建多节点纠缠的分布式量子网络.  相似文献   

13.
Lifetime-limited optical excitation lines of single nitrogen-vacancy (NV) defect centers in diamond have been observed at liquid helium temperature. They display unprecedented spectral stability over many seconds and excitation cycles. Spectral tuning of the spin-selective optical resonances was performed via the application of an external electric field (i.e., the Stark shift). A rich variety of Stark shifts were observed including linear as well as quadratic components. The ability to tune the excitation lines of single NV centers has potential applications in quantum information processing.  相似文献   

14.
刘刚钦  邢健  潘新宇 《物理学报》2018,67(12):120302-120302
量子计算和量子传感近年来受到了广泛的关注.金刚石氮空位中心以其简单稳定的自旋能级结构、高效便捷的光学跃迁规则以及室温下超长的自旋量子态相干时间而成为量子信息科学中引人瞩目的新星.本文从实验研究的角度介绍金刚石氮空位中心自旋量子调控的基础理论、典型技术和代表性结果;重点讨论1)如何通过光磁共振方法在室温大气环境下对单个自旋进行探测和相干操控,2)金刚石中自旋量子比特退相干的主要机制和抑制手段,3)自旋态相干操控技术在量子传感中的应用;最后对氮空位中心在量子计算和量子传感中的发展趋势进行了小结.  相似文献   

15.
High‐fidelity universal quantum gates are crucial in quantum computing. Three high‐fidelity universal quantum gates, namely the hybrid controlled NOT gate, the hybrid Toffoli gate, and the hybrid Fredkin gate, on a flying photon qubit and diamond nitrogen‐vacancy (NV) centers, assisted by low‐Q single‐sided cavities, are presented. Errors due to the imperfection of the practical input–output process are detected to improve the fidelity of these quantum gates, which therefore relaxes the requirement on their implementation, since strong coupling is no longer mandatory. In addition, quantum gates have the advantage that they can work faithfully even when the resonant condition among the NV center, the photon, and the cavity is not strictly satisfied, or the NV centers are not identical. The performance and success probability of these quantum gates are analyzed, finding that these schemes are feasible with current technology.  相似文献   

16.
This is a review of the derivation of the Landauer conductance using the Keldysh non-equilibrium Green's function (NEGF) formalism and the equations-of-motion (EOM) method. We consider the elastic quantum electronic transport through a multi-lead device and treat the conductor in the mean-field approximation. This is suitable for open quantum dots as well as for several molecular systems where charging effects are negligible. The focus of the presentation is to unveil the technical issues involved in the formalism. We show how the Landauer conductance emerges as a linear term in the current-voltage I-V characteristics and indicate how to go beyond this regime. We address the connection of the NEGF approach to recent developments in molecular transport and discuss the problems that arise when one tries to include interaction effects beyond the mean field.  相似文献   

17.
Using a recent extension of the Lusztig braid group automorphisms of a quantum affine algebra, I prove that at an oddl-th root of unity, thel-th power of every real root vector lies in the centre of the quantum affine algebra. The centre of a quantum affine algebra at a root of unity is infinite dimensional: nevertheless it is infinite dimensional over its centre.  相似文献   

18.
董杨  杜博  张少春  陈向东  孙方稳 《物理学报》2018,67(16):160301-160301
在室温下,金刚石中的氮-空位(NV)色心具有荧光强度稳定、电子自旋相干时间长以及与生俱来的原子尺寸的特点,是优良的纳米量子传感器.在成像领域中,将各种超分辨成像显微技术应用于NV色心体系,发展出多种高空间纳米分辨率的成像方法.此外,NV色心作为固态量子比特可以通过光学方法对其进行初始化和读取.NV色心电子自旋量子态还可以与电磁场、应力等进行相干耦合.基于这些耦合,科研人员在实验上实现了对相关物理量纳米级空间分辨率的高灵敏表征.目前这些量子传感技术可以应用在新材料、单个蛋白质核自旋、活体神经元等方面的测量中.本综述主要介绍金刚石中NV色心纳米量子传感器件的工作原理、实验实现和优化以及在相关领域的应用.  相似文献   

19.
Quantum dots in quantum well structures   总被引:1,自引:0,他引:1  
Recent progress toward fabricating and characterizing quantum dots in III–V quantum well structures is reviewed. Quantum dots made by use of lithography and etching, including deep-etched, barrier-modulated, strain-induced and interdiffused quantum dots, are described. Quantum dots fabricated by growth, including natural quantum dots, dots on patterned substrates, and self-assembled dots, are discussed. Dot sizes and uniformity, energy-level splittings, and luminescence efficiencies that are now being achieved are discussed. The status of key issues, such as the energy relaxation in quantum dots, is mentioned.  相似文献   

20.
Single-photon flux is one of the crucial properties of nitrogen vacancy(NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps,and the total detection coefficient can be 0.8%,wich is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号