首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2006,18(8):807-813
The electrochemical oxidation of ascorbate ions is comparatively studied at polyaniline (PANI) and poly‐ortho‐methoxyaniline (POMA) layers in absence and presence of electrodeposited copper species. In comparison to PANI, POMA layers allow decreasing the overpotential necessary for driving the ascorbate oxidation reaction. A nonlinear dependence of the ascorbate oxidation current on the polymer layer redox charge is found. Copper electrodeposited in PANI and POMA layers is electrocatalytically active for the investigated reaction. Two separate oxidation waves are observed in the case of Cu‐PANI whereas a single ascorbate oxidation wave and enhanced currents are found in the Cu‐POMA case.  相似文献   

2.
Polyaniline layers are produced by electrochemical polymerisation of aniline in the presence of small amounts of poly(2-acryalamido-2-methyl-propane-sulfonic acid) in an inorganic acid solution. Electroactivity and in situ conductance of the obtained polysulfonic acid-doped layers are studied in slightly acidic and neutral solutions. Electroless deposition of silver particles is carried out in silver-EDTA complex ion solutions at pH????.2 and pH????.6 by using the polyaniline layers as reductant. The amount of electroless-deposited silver is studied depending on: polymerisation charge used to synthesize the polymer layer, pH of the plating solution, metal ion concentration and dipping time. SEM shows in all cases a highly non-homogeneous distribution of the metallic phase over the surface, the most protruding fibrillar polymer structures favouring the electroless silver deposition. A linear dependence between amount of the polyaniline material and amount of deposited silver is found for the silver plating solutions with the highest investigated concentration (10?mmol?l??). At lower concentrations (2.0 and 0.4?mmol?l??), the same amount of silver becomes deposited on polymer layers with markedly different charges. The electroless deposition of silver in the solutions with lower acidity results in lower amounts of deposited silver at otherwise identical conditions. Effects such as charge transfer within the polymer phase and mass transport in the solution are addressed to explain the observed dependencies of the amount of deposited silver on concentration and pH in the different plating solutions.  相似文献   

3.
A hydrated osmium complex-containing redox polymer film-modified gold electrode based on electrochemical cross-linking was developed. The amount and the characteristics of redox polymer film cross-linked on the gold electrode were investigated by using electrochemical quartz crystal microbalance (EQCM). The redox polymer film exhibited a strong electrocatalytic activity toward the oxidation of uric acid with a lowering of the overpotential by about 230 mV and a large increase in the magnitude of the oxidation peak current. Based on this procedure, an amperometric method for the determination of uric acid concentration was proposed.  相似文献   

4.

Polyaniline layers are produced by electrochemical polymerisation of aniline in the presence of small amounts of poly(2-acryalamido-2-methyl-propane-sulfonic acid) in an inorganic acid solution. Electroactivity and in situ conductance of the obtained polysulfonic acid-doped layers are studied in slightly acidic and neutral solutions. Electroless deposition of silver particles is carried out in silver-EDTA complex ion solutions at pH = 4.2 and pH = 6.6 by using the polyaniline layers as reductant. The amount of electroless-deposited silver is studied depending on: polymerisation charge used to synthesize the polymer layer, pH of the plating solution, metal ion concentration and dipping time. SEM shows in all cases a highly non-homogeneous distribution of the metallic phase over the surface, the most protruding fibrillar polymer structures favouring the electroless silver deposition. A linear dependence between amount of the polyaniline material and amount of deposited silver is found for the silver plating solutions with the highest investigated concentration (10 mmol l−1). At lower concentrations (2.0 and 0.4 mmol l−1), the same amount of silver becomes deposited on polymer layers with markedly different charges. The electroless deposition of silver in the solutions with lower acidity results in lower amounts of deposited silver at otherwise identical conditions. Effects such as charge transfer within the polymer phase and mass transport in the solution are addressed to explain the observed dependencies of the amount of deposited silver on concentration and pH in the different plating solutions.

  相似文献   

5.
Ferrocene attached to the surface of a platinum electrode catalyses the electrochemical oxidation of ascorbic acid in acidic buffer solutions. The overpotential for ascorbic acid oxidation is decreased by 150 mV at pH 2.2 compared with reaction at bare platinum; and an increase in anodic current and decrease in cathodic current for the redox reaction of ferrocene occurs on addition of ascorbic acid to the solution. The ferrocene-modified electrode is useful for the voltammetric determination of ascorbic acid in natural fruit juices. The advantages result from the electrocatalytic effect and from the prevention of adsorption of inhibitory substances from solution.  相似文献   

6.
Different oxidizing and reducing agents can be separated by a solid polymer membrane, but they still react. The possibility to conduct this type of transmembrane redox reactions coupled with electroneutral electron/chloride countertransport is demonstrated here for polyaniline (PANI) membrane doped with camphor sulfonic acid (CSA). For the 80 microm film, the transmembrane reaction rate can be as high as 5 x 10 (-8) mol/(cm (2) s) with FeCl 3 as the oxidizing and ascorbic acid as the reducing agents, which is approximately 25 times higher than described by us earlier with HCl-doped PANI membrane. Both solutions separated by the membrane with CSA can have pH near neutral, which is impossible with HCl-doping. Advanced kinetic mechanism of electron/ion coupled transport including chloride equilibrium at the interface is proposed, and major kinetic parameters are estimated. Interfacial redox rate constants (cm/s) are compared with the rate constants determined for polarized membranes by electrochemical methods and also with usual first and second order rate constants in the bulk volume. Possibility to conduct different redox reactions between substances which are not mixed and are separated by a membrane makes this new process very attractive for chemical and environmental engineering.  相似文献   

7.
We report on the spectroelectrochemical characterization of conducting polymer (CP) films, composed of alternating layers of poly(aniline) (PANI) and poly(acrylic acid) (PAA), deposited on ITO-coated, planar glass substrates using layer-by-layer self-assembly. Absorbance changes associated with voltammetrically induced redox changes in ultrathin films composed of only two bilayers (ITO/PANI/PAA/PANI/PAA) were monitored in real time using a unique multiple reflection, broadband attenuated total reflection (ATR) spectrometer. CP films in contact with pH 7 buffer undergo a single oxidation/reduction process, with ca. 12.5% of the aniline centers in the film being oxidized and reduced. The ATR spectra indicate that during an anodic sweep, the leucoemeraldine form of PANI in these films is oxidized to generate both the emeraldine and pernigraniline forms simultaneously. A comparison of the behavior observed during anodic and cathodic sweeps suggests that the rate of oxidation is limited by structural changes in the polymer film originating in electrostatic repulsion between positively charged PANI chains.  相似文献   

8.
The composite polymer layers consisting of polyaniline (PANI) and poly(o-phenylenediamine) (poly(o-PDA)) were electrodeposited on a platinum electrode by simultaneous electrochemical oxidation of corresponding monomers from aquaeous hydrochloric solutions. The growth of PANI and poly(o-PDA) occurs separately resulting in layers with two distinct, finely distributed phases. The first deposited layers are composed mainly of poly(o-PDA) and become richer in PANI as the electropolymerization proceeds. The aniline/o-PDA copolymer was not formed during electrodeposition, as evidenced by cyclic voltammetry and Fourier-transformed IR spectroscopy. It was demonstrated that the electrochromic properties of resulting composite layers are the combination of yellow/brown-reddish and green/dark blue observable color transitions which are characteristics of poly(o-PDA) and PANI, respectively. Electrocatalytic properties of the electrosynthesized composite layers were investigated on quinone/hydroquinone (Q/H2Q) redox system and it was shown that the composite layers increase the heterogeneous electron transfer rate with a magnitudes ranging from those obtained on pure poly(o-PDA) to those obtained on pure PANI layer.  相似文献   

9.
《Electroanalysis》2006,18(11):1097-1104
Copolymerization of an osmium(II) functionalized pyrrole moiety, osmium‐bis‐N,N'‐(2,2′‐bipyridyl)‐N‐(pyridine‐4‐ylmethyl‐(8‐pyrrole‐1yl–octyl)‐amine)chloride ( I ) with 3‐methylthiophene was carried out. The resulting conducting polymer film exhibited a clear redox couple associated with the Os3+/2+ response and the familiar conducting polymer backbone signature. The effect of film thickness upon the redox properties of the copolymer was investigated in organic electrolyte solutions. Scanning electron micrographs (SEM) along with energy dispersive X‐ray (EDX) spectra of the copolymerized films were undertaken, both after formation and redox cycling in neutral buffer solution. These clearly show that electrolyte is incorporated into the polymer film upon redox cycling through the Os3+/2+ redox system. The Os3+/2+ response associated with the copolymer was seen to be significantly altered in the presence of ascorbic acid both in acidic and neutral pH buffer solutions. This pointed to an electrocatalytic reaction between the ascorbic acid and the Os3+ form of the copolymer. Under acidic conditions the copolymer film exhibited a sensitivity of 1.76 (±0.05) μA/mM with a limit of detection (LOD) of 1.45 μM for ascorbic acid. Under neutral pH conditions the copolymer exhibited a sensitivity of 19.26 (±1.05) μA/mM with a limit of detection (LOD) of 1.28 μM for ascorbic acid.  相似文献   

10.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

11.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

12.
In this work we examined the electrochemical properties of poly(indole-5-carboxylic acid), PIn5COOH. The polymer was produced by electrochemical polymerisation using cyclic voltammetry (CV). It was shown that PIn5COOH is electroactive in aqueous solutions showing two redox processes in acidic solution and one redox process in solutions with pH > 4. The oxidation of catechol (CT) on Pt/In5COOH modified electrodes was investigated by cyclic voltammetry (CV) and rotating disc electrode (RDE) voltammetry. It was established that CT was oxidised only after the oxidation of polymer film was initiated and that polymer significantly enhanced the oxidation and reduction peak currents in comparison with bare Pt electrode. The variation of peak currents (i pa, i pc) as a function of CT concentration was found to be linear up to 6 mM. Experiments with a rotating disk electrode show that the oxidation reaction of catechol occures not only at the polymer/electrolyte interface but also in the polymer film.  相似文献   

13.
A novel redox polymer comprised of poly(3,4‐ethylenedioxythiophene) (PEDOT) and ethylenediamine tetraacetic acid‐Ni2+ (EDTA‐Ni) complex serving as doping anions has been synthesised by a facile one‐step electrochemical approach and utilized as an efficient electrode material for sensitive luteolin detection. The morphology, chemical structure and composition of the redox polymer were analyzed by SEM, UV‐vis and FT‐IR spectrum. Electrochemical tests revealed that the redox polymer was highly electrochemically reversible and exhibited good electrocatalytic activity to the redox reactions of luteolin with a linear range covering from 1 nM to 10 µM with a low detection limit of 0.3 nM of luteolin.  相似文献   

14.
Three alternative methods were developed for the synthesis of modifying palladium–polypyrrole layers on the surface of an inert electrode. Their electrocatalytic activity toward formaldehyde under inert atmosphere was checked. All the suggested methods are one-stage and allow synthesis of a film on the electrode surface from a solution containing a palladium salt and pyrrole in the absence of other active reagents. The electrochemical methods (potentiodynamic and double cathodic and anodic pulses techniques) in an aqueous medium give films with poorly reproducible electrocatalytic properties, while the chemical redox synthesis affords films with reproducibly high electroactivity toward methylene glycolate.  相似文献   

15.
Poly(malachite green) film modified Nafion‐coated glassy carbon electrodes have been prepared by potentiodynamic cycling in malachite green solution. The pH of polymerisation solution has only minor effect on film formation. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the growth of the poly(malachite green) film. Cyclic voltammogram of the poly(malachite green) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 56 mV per pH unit. The electrocatalytic behavior of poly(malachite green) film modified Nafion‐coated glassy carbon electrodes was tested towards oxidation of NADH, dopamine, and ascorbic acid. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(malachite green) film compared to bare glassy carbon electrode. In the case of NADH, the overpotential was reduced substantially on modified electrode. Finally, the feasibility of utilizing poly(malachite green) film electrode in analytical estimation of ascorbic acid was demonstrated in flow injection analysis.  相似文献   

16.
Coupling of redox-silent biocatalytic processes for analyte detection with enzyme-catalyzed redox reactions for signal generation is proposed by the modulation of electrostatic interactions between a pH-responsive polymer and a redox enzyme to control the off–on transition for electrochemical signal generation. Glassy carbon electrodes are modified with a poly(vinyl)imidazole Os(bipyridine)2Cl redox hydrogel film entrapping urease and PQQ-dependent glucose dehydrogenase, while glucose is present in the solution. The off–on transition is based on the detection of urea as model analyte which is hydrolyzed to ammonia by urease within the hydrogel film concomitantly increasing the local pH value thus invoking deprotonation of the imidazole groups at the polymer backbone. The decrease of positive charges at the polymer decreases electrostatic repulsion between the polymer and the positively charged PQQ-dependent glucose dehydrogenase. Hence, electron transfer rates between polymer-bound Os complexes and PQQ inside the enzyme are enhanced activating electrocatalytic oxidation of glucose. This process generates the electrochemical signal for urea detection.  相似文献   

17.
采用循环伏安法研究一取代硅钨杂多酸在酸性水溶液中的电化学行为及pH的影响.制备了包含杂多酸[SiZn(H2O)W11O39]%6-(SiZnW11)和聚合物阳离子-聚二烯丙基二甲基氯化铵(PDDA)的多层膜修饰电极,研究了其电化学行为.逐层的循环伏安行为表明膜的增长均匀,峰电流随膜层数的增加而增加,与其在液中的氧化还原行为相比,多层膜中的SiZnW11显示出一些特殊的性质.对BrO3^-和NO2^-体系的还原具有良好的电催化性能.  相似文献   

18.
Alkali lignin undergoes strong adsorption on polycrystalline gold electrodes. Subsequent oxidation in a sulfuric acid solution leads to a restructured redox‐active polymer that shows features characteristic for surface confined species. Surface coverage of up to 4.40×10?10 mol cm?2 may be obtained depending on the adsorption time or lignin concentration in the adsorption solution. Using Laviron's approach the electron‐transfer rate constant and the transfer coefficient were found to be 8.9 s?1 and 0.35, respectively. The formal potential of the redox couple shifted negatively with pH at a rate of ca. 60 mV/pH unit, suggesting a 2 e/2 H+ reaction. The redox couple was also found to be a good mediator for electrochemical ascorbic acid oxidation in neutral phosphate buffer with ca. 250 mV reduction of the oxidation overpotential.  相似文献   

19.
Au/polyaniline (PANI)–poly(4-styrenesulfonate) (PSS) hybrid nanoarray is fabricated for biomolecular sensing in neutral aqueous solutions. Firstly, an array of one-dimensional Au nanorods (diameter = ca. 200 nm, length = ca. 3 μm) is formed by a template-electrodeposition method using a porous anodic alumina membrane, and then a thin PANI–PSS composite layer is electropolymerized on the surface of the Au nanorods. The resulting Au/PANI–PSS hybrid nanoarray exhibits a quasi-reversible redox electrochemical process at ca. +0.11 V and electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) is attained with a detection limit of 0.3 μM in a neutral solution.  相似文献   

20.
《Electroanalysis》2004,16(21):1791-1800
This paper describes electrochemical characteristics of poly(methylene blue) electrolytically deposited on glassy carbon and examines the electrocatalytic activity of the polymer toward oxidation of the coenzyme NADH. Redox‐active properties of the cationic polyelectrolyte arose from both electron self‐exchange between electroactive sites and a high ionic film‐conductivity. The diffusion coefficient of charge carriers in the film increased with decreasing solution pH, indicating the pH dependence of the electron diffusion coefficient. The electrocatalytic oxidation of NADH at the polymer‐modified electrode proceeded via an intermediate charge‐transfer complex of the reduced polymer with the oxidized coenzyme. The complex dissociated more rapidly into the oxidation products as the reduced polymer protonated. Thus, the rate constant for the cross‐exchange reaction rose with a decrease in pH. For NADH oxidation, the polyelectrolyte exhibited an electrocatalytic activity higher than the monomeric dye because of a stronger oxidizing power of the second oxidized form of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号