首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polyaniline (PANI) and polypyrrole (PPY) were synthesized via in situ chemical oxidative polymerization and are used as adsorbents for removal of Congo Red (CR) dye from aqueous solution. The effects of various experimental parameters including pH of the solution, contact time, initial concentration, adsorbent dosage, and temperature on adsorption of CR by PANI and PPY were systematically investigated. The experimental results showed that the adsorption efficiency was increased with contact time and adsorbent dosage. The maximum removal efficiency was found after 45 minutes of solid/liquid contact with adsorbent doses of 0.4 and 1.73?g/L for PANI and PPY, respectively. The kinetic data were best fitted by the pseudo-second-order model. The adsorption equilibrium results were well fitted by the Langmuir isotherm model. These results suggest that the PANI and PPY can be used as alternative adsorbents for the treatment of wastewaters containing dyes.  相似文献   

2.
Polyaniline (PANI) was prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulphate in water or in a water-ethanol mixture. In the presence of ethanol, PANI nanotubes and nanorods were observed. Both products were carbonised in a nitrogen atmosphere at 650°C. Initial and carbonised products were characterised by scanning and transmission electron microscopies, thermogravimetric analysis and wide-angle X-ray scattering. Their molecular structure was studied by UV-VIS, infrared, and Raman spectroscopies. Carbonised sample obtained from the PANI salt prepared in the presence of ethanol exhibits Raman spectrum which corresponds to a more ordered carbon-like material than carbonised samples obtained from the PANI base and the PANI salt prepared in pure water. The influence of ethanol present in the reaction mixture on the molecular and supra-molecular structure of PANI and, consequently, on the enhancement of chainordering of carbonised PANI is discussed.  相似文献   

3.
In the preparation of activated carbon (AC) by the method of physical activation, the carbonisation stage is usually carried out by heat treatment of a precursor at a given temperature in an inert atmosphere, whereas the activation stage is performed in air, carbon dioxide or steam atmosphere. Here, the use of a chemical carbonisation-based method with H2SO4 in aqueous solution as an alternative to the physical carbonisation method is studied. Using cherry stones (CS), AC was prepared by physical activation in air, as usual, and by carbonising with H2SO4 prior to activating in air. CS was carbonised at 600 °C in nitrogen atmosphere or with H2SO4 solutions of various concentrations and the resulting products were activated at 350–550 °C in air. Characterisation was undertaken by proximate analysis, TG–DTG analysis, N2 adsorption at −196 °C, mercury porosimetry, density measurements and FT-IR spectroscopy. By the H2SO4-chemical carbonisation, AC with a lower inorganic matter content, wider pore size distribution in the meso- and macropore ranges, higher mesopore volume and carboxylic acid groups are prepared. The development of microporosity is similar regardless of the carbonisation method provided that the activation of the chemically carbonised product is effected at higher temperature. Physical carbonisation results in AC with an homogeneous macroporosity and with quinone type functional groups. Yield is also slightly higher by this carbonisation method.  相似文献   

4.
Advanced carbon materials are important for the next-generation of energy storage apparatus, such as electrochemical capacitors. Here, the physical and electrochemical properties of carbonised filter paper (FP) were investigated. FP is comprised of pure cellulose and is a standardised material. After carbonisation at temperatures ranging from 600 to 1700 °C, FP was contaminant-free, containing only carbon and some oxygenated species, and its primary fibre structure was retained (diameter ≈20–40 μm). The observed enhancement in conductivity of the carbonised FP was correlated with the carbonisation temperature. Electrochemical capacitance in the range of ≈1.8–117 F g−1 was achieved, with FP carbonised at 1500 °C showing the best performance. This high capacitance was stable with >87 % retained after 3000 charge–discharge cycles. These results show that carbonised FP, without the addition of composite materials, exhibits good supercapacitance performance, which competes well with existing electrodes made of carbon-based materials. Furthermore, given the lower cost and renewable source, cellulose-based materials are the more eco-friendly option for energy storage applications.  相似文献   

5.
Polyaniline (PANI) and polypyrrole (PPY) were grafted over cotton fabrics by in situ polymerization. FTIR spectra show systematic shifting of bands corroborating surface grafting of conducting polymers on cotton fabric. SEM images revealed that the surface coating of PANI was smoother than PPY. However, better control over coating thickness and uniformity was achieved in PPY fabric. The probable formation mechanism of grated fabrics has also been proposed. The good thermal stability and acceptable electronic conductivity values indicate that these fabrics could be used for electrostatic charge dissipation and microwave absorption. The antistatic studies have shown complete charge dissipation (decay time <0.01 sec). The microwave absorption studies of the conducting fabrics in X‐band (8.2–12.4 GHz) show absorption dominated total shielding effectiveness in the range ?11.3 to ?11.7 dB (>92% attenuation) and ?9.2 to ?9.6 dB (>88% attenuation) for fabrics grafted with PPY and PANI, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.  相似文献   

7.
以有机溶剂热生长技术(solvothermaltechnique)制备了半导体硫族化合物(CdS、ZnS、MoS2)等纳米颗粒,采用XRD、TEM等技术对其结构进行表征.以ITO导电玻璃以及导电聚合物(PANI、PPY)膜为基底,将纳米颗粒涂布其上并以PL法研究其光学特性,实验结果表明:经修饰后,材料的荧光发射位置发生显著的变化.  相似文献   

8.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   

9.
A simple and sensitive method for determining anatoxin-a in aqueous samples was developed using solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC-MS) detection. Three forms of polyaniline (PANI) films and a single form of polypyrrole (PPY) film were prepared and applied for SPME. The extraction properties of these films to anatoxin-a were examined and it was shown that leucoemeraldine form of PANI displayed a better selectivity to this compound. SPME conditions were optimized by selecting the appropriate extraction parameters, including type of coating (leucoemeraldine form of PANI at 32 microm thicknesses), salt concentration (10%, w/v), time of extraction (30 min) and stirring rate (1000 rpm). The calibration curve was linear in the range from 50 to 10,000 ng/ml, with the detection limit (S/N = 3) of 11.2 ng/ml. This method was successfully applied for the analysis of anatoxin-a in the cultured media of two species of cyanobacteria.  相似文献   

10.
Carbonisation of polyflavonoid tannin–formaldehyde–furfuryl alcohol rigid foams yields a three-dimensional network in which polynuclear aromatic hydrocarbon chains of high molecular weight are also covalently linked to some furan resin structures surviving carbonisation. Structure conservation on carbonising extends to furanic structures derived by the self-condensation of furfuryl alcohol which are integral part of the total network. Some complex, three-dimensional structures derived by the rearrangement to polyaromatic hydrocarbons of polyflavonoid tannins, constituted of aromatic benzene and furan rings, and some formaldehyde-derived methylene bridges appear to be formed. The fragments observed are fragments of the continuous network formed and converted by carbonisation. MALDI-TOF appears to be a suitable method for examining oligomer residues present in carbonised complex polycondensation polymer networks and it appears to be capable of determining aspects of the structure and characteristics of complex solids which are too difficult to determine by other techniques.  相似文献   

11.
This paper summarizes and reviews the research on electromagnetic interference (EMI) shielding with intrinsically conducting polymers (ICPs), mainly polyaniline (PANI) and polypyrrole (PPY), and their composites in various frequency ranges. ICPs are new alternative candidates for EMI shielding applications due to their lightweight, corrosion resistance, ease of processing, and tunable conductivities as compared with typical metals. More importantly, the dominant shielding characteristic of absorption other than that of reflection for metals render ICPs more promising materials in applications requiring not only high EMI shielding effectiveness but also shielding by absorption, such as in stealth technology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We demonstrated here a unique method to produce a highly stable and conductive polypyrrole (PPY) nanoparticle film. The procedure entails controlling the redox switching and the electrochemical synthesis of PPY. PPY was synthesized at a very low forming potential or reaction rate in nonaqueous CH2Cl2 solvent to promote the PPY nanoparticle formation. Then its property was further optimized by first electrochemically reducing it at a hydrogen evolution potential in a neutral 0.1 M NaClO4, then in a slightly acidic 0.05 M asparagine electrolyte. The PPY nanoparticle thin film was characterized by AFM, UV-vis and EQCM. The procedures described here have proven to be reproducible. The data provided by the EQCM shows a reversible doping and undoping mechanism of asparagine indicating the presence of a highly conductive PPY variant. Both UV-vis and electrochemical characterization suggest that the PPY film made using our approach has excellent redox activity as well as high stability when characterized in asparagine solution. The reversible doping and undoping of asparagine during redox switching shows great potential of these PPY nanoparticle films as biological membranes for a broad range of biological applications.  相似文献   

13.
Highly conducting polypyrrole (PPY) films, doped with various anions [pTS?, ClO4?, and NO3? and mixed electrolyte system (pTS? + ClO4?)], have been electrochemically synthesized in aqueous solution at ~275 K in an inert atmosphere. PPY exhibits metallic order dc conductivity at room temperature and shows variation of conductivity with respect to time of polymerization. Effect of dopant anion on growth mechanism of PPY is evident from its surface morphology. X‐ray photoelectron spectroscopy (XPS), used to examine the surface composition and doping level of various PPY films, confirms the anionic doping into the polymer backbone. Both XPS and ultraviolet–visible spectroscopy give evidence of formation of polarons and bipolarons. The temperature (4.2–320 K)‐dependent dc conductivity data of these PPY films have been explained by Mott's 3D variable‐range hopping conduction model. Mott's parameters have been estimated, and structural disorder with doping is correlated for all the samples. Mott's criterion for distant hopping sites prevails in case of moderately doped samples (PPY3, PPY4, and PPY5), whereas the hopping to nearest neighbor sites is found more suitable in case of highly doped samples (PPY1 and PPY2). The origin of these changes is due to the modification in the molecular structure of PPY, which is governed by different growth mechanisms for organic (pTS?) and inorganic (ClO4? and NO3?) counter anions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
聚吡咯(PPY)/聚己内酰胺(Nylon 6)——导电复合材料的研究   总被引:1,自引:0,他引:1  
本文用电化学氧化聚合的方法制备出了既具有优良的导电性能又具有良好机械性能的聚吡咯(PPY)/聚己内酰胺(Nylon 6)的复合材料,该复合材料的导电率可达119s/cm,并对聚吡咯/聚己内酰胺导电复合材料进行了扫描电子显微镜、电导率及机械性能的测试及表征。  相似文献   

15.
对聚苯胺、聚吡啶等共轭聚合物与非导电聚合物材料的复合体系的结构和性能进行了综述。不同方法制备的复合材料在结构和性能上各有特点。一般共轭聚合物与非导电高分子材料相容性差、尤其是低极性高分了。  相似文献   

16.
Oxidative damage is an important factor in causing various human disease and injury. As an oxidative DNA damage product, 8-hydroxy-2′-deoxyguanosine (8-OHdG) is a key marker, which is widely used to study oxidative damage mechanism in diseases. Most reported electrochemical methods were based on oxidation current of 8-OHdG. In this work, a simple electrochemical biosensor for ultrasensitive detection of 8-OHdG was proposed based on it triggered polyaniline (PANI) deposition on tetrahedral DNA nanostructure (TDN). TDN was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences. 8-OHdG-aptamer on the top of TDN formed a hemin/G-quadruplex structure in the presence of 8-OHdG and hemin, which have high catalytic activity to trigger PANI deposition. Numerous negative charges on the duplex DNAs contained in hemin/G-quadruplex and TDN supplied exquisite environment for PANI deposition, which improved the detection sensitivity greatly by increasing the DPV current to10-fold (∼3 μA) compared to our previously reported method without TDN. The response signals correlated linearly with the concentration of 8-OHdG ranging from 10 pM to 2 nM, with a detection limit of 1 pM (S/N = 3). The sensitivity was improved to almost 300-fold when compared with most of previously reported electrochemical methods. The method was also simple and reliable, avoiding complex, expensive label procedures and nanomaterial synthesized procedures. The method had been successfully applied to quantify 8-OHdG in urine and human serum samples with satisfactory results.  相似文献   

17.
Two procedures were applied for the preparation of polyaniline (PANI)-Pt composites in aqueous solutions using sodium borohydride as the reducing agent. The first one involved reduction of Pt ions originating from PtCl4 conducted in the presence of PANI. The second was a two-step method in which doping of PANI with Pt-containing anions was followed by their reduction. The composites containing various amounts of Pt were obtained. They were characterized by X-ray diffraction, X-ray photoelectron and IR spectroscopies. This allowed to establish differences in the efficiency of both methods of composite preparation. It was also found that the composites show mainly redox activity in catalytic isopropyl alcohol conversion.  相似文献   

18.
徐惠  蒲金娟  陈泳  刘健 《电化学》2016,22(1):64
以苯胺为单体,采用界面聚合法合成了不同浓度的Ag+掺杂的聚苯胺(PANI/Ag+),使用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)和场发射扫描电镜(SEM)等手段对其结构和形貌进行了分析和表征. 在0.5 mol•L-1 Na2SO4电解液中,通过循环伏安(CV)、恒流充放电(CP)以及电化学阻抗(EIS)等技术研究了其电化学性能. 结果表明,当电流密度为5 mA•cm-2时,PANI/0.12mol•L-1 Ag+的比电容达529 F•g-1,循环1000次后比电容保持51%,相对于无Ag+掺杂的PANI,表现出更优良的电化学电容特性.  相似文献   

19.
Cyclic voltammetry and chronoamperometry were used to study the deposition of polypyrrole on a decanethiol self-assembled monolayer modified gold electrode (PPY/SAM/Au). The voltammetric behavior of the PPY/SAM film was investigated in the presence of several different electrolytes. It is found that the SAM shows great influence on the nucleation and growth of the PPY film. The reaction of the SAM and the anions causes the different voltammetric behavior of the polymerization of pyrrole on the modified electrode. Chronoamperometry shows the nucleation and growth of the PPY is initially inhibited but followed by a rapid increase. The SAM also influences electrochemical behavior of PPY film. Experiments show that the SAM can greatly depress the diffusion of anions in the PPY film, and minimize the background capacitance current.  相似文献   

20.
Graphite-supported polyaniline films (PANI) containing rhodium particles were obtained by two procedures: metal electrodeposition on a prepared PANI film and electropolymerization. The adsorption/desorption and electrowinning of hydrogen on these films were observed for both types of synthesized composite films. PANI/Au composites were synthesized using the PANI films deposited onto a gold electrode. High anode potentials were further applied to the electrode in the presence of chloride ions, leading to a dissolution of gold and its transfer to the films during subsequent electroreduction. The amounts of the chloride complexes of gold formed in this procedure were determined by cyclic voltammetry of their electroreduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号