首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Polyaniline (PANI) films were prepared in situ on silicon windows during the oxidation of aniline with ammonium peroxydisulfate in aqueous solutions of strong (0.1 M sulfuric) or weak (0.4 M acetic) acid or without any acid. In solutions of sulfuric acid, a granular PANI is produced, in solutions of weak acids or without any acid, PANI nanotubes are obtained. The thermal stability and structural variation of the corresponding films produced on silicon windows during treatment at 80 °C for three months were studied by FTIR and Raman spectroscopies. The morphology of the films is preserved during the degradation but the molecular structure changes. The results indicate that the spectral changes correspond to deprotonation, oxidation and chemical crosslinking reactions. The films of PANI salts loose their protonating acid. PANI bases are more stable than the salt forms during thermal ageing. The films obtained in water or in the presence of acetic acid are more stable than those prepared in solutions of sulfuric acid. The protonated structure is more prone to crosslinking reactions than deprotonated one. The molecular structure corresponding to the nanotubular morphology, which contains the crosslinked phenazine- and oxazine-like groups, is more stable than the molecular structure of the granular morphology.  相似文献   

2.
Nanostructured polyaniline (PANI) was synthesised by the oxidation of aniline in a water/ isopropanol (propan-2-ol, IPA) (50 vol. %) mixture, without added acid, using ammonium peroxydisulfate (APS) as an oxidant. Influence of the IPA co-solvent and the reaction time on the molecular structure, morphology and properties of synthesised PANI samples was studied by FTIR, Raman, and UV-VIS spectroscopies, scanning and transmission electron microscopies (SEM and TEM), and conductivity measurements. The course of the reaction was followed by monitoring changes in the temperature and acidity of the reaction medium. The results were compared with those obtained for PANI prepared in water without IPA under the same reaction conditions. The importance of the solvation effects, dielectric constant of the solvent, and the enthalpy of mixing of IPA with water on the course of the polymerisation reaction and on the properties of polymeric products in the water/IPA medium in comparison with those in water was pointed out.  相似文献   

3.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

4.
Nanocomposites of polyaniline (PANI) and single‐wall carbon nanotubes (SWNTs) were prepared and characterized via resonance Raman and electronic absorption spectroscopy (ultraviolet–visible/near‐infrared). The chemical synthesis of PANI was performed in the presence of SWNTs in concentrations ranging from 10 to 50 wt % (SWNT/PANI). The obtained materials were hydrophilic, homogeneous composite compounds. The chemical interaction between PANI (in the conducting emeraldine salt form and in the insulating emeraldine base form) and metallic and semiconducting nanotubes was investigated. The emeraldine salt form of the polymer was significantly stabilized in the composite in comparison with plain PANI. A selective electronic interaction process between PANI and metallic SWNTs was found. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 815–822, 2005  相似文献   

5.
Polyaniline (PANI) and polypyrrole (PPY) undergo carbonisation in an inert/reduction atmosphere and vacuum, yielding different nitrogen-containing carbon materials. This contribution reviews various procedures for the carbonisation of PANI and PPY precursors, and the characteristics of obtained carbonised PANI (C-PANI) and carbonised PPY (C-PPY). Special attention is paid to the role of synthetic procedures in tailoring the formation of C-PANI and C-PPY nanostructures and nanocomposites. The review considers the importance of scanning and transmission electron microscopies, XPS, FTIR, Raman, NMR, and EPR spectroscopies, electrical conductivity and adsorption/desorption measurements, XRD, and elemental analyses in the characterisation of C-PANIs and C-PPYs. The application of C-PANI and C-PPY in various fields of modern technology is also reviewed.  相似文献   

6.
Polyaniline (PANI) nanotubes were prepared by oxidation of aniline in 0.4 M acetic acid. They were subsequently used as a reductant of silver nitrate in 1 M nitric acid, water or 1 M ammonium hydroxide at various molar ratios of silver nitrate to PANI. The resulting PANI-silver composites contained silver nanoparticles of 40–60 nm size along with macroscopic silver flakes. Under these experimental conditions, silver was always produced outside the PANI nanotubes. Changes in the molecular structure of PANI were analyzed by FTIR spectroscopy. Silver content in the composites was determined as a residue by thermogravimetric analysis, and confirmed by density measurements. The highest conductivity of a composite, 68.5 S cm−1, was obtained at the nitrate to PANI molar ratio of 0.67 in water. Also, the best reaction yield was obtained in water. Reductions performed in an acidic medium gave products with conductivity of 10−4–10−2 S cm−1, whereas the reaction in alkaline solution yielded non-conducting products.  相似文献   

7.
借助沉积聚合辅助的“无模板”法在玻璃基片上制备出水杨酸掺杂的微/纳米结构的聚苯胺.实验发现,微/纳米结构的形貌及其浸润性依赖于掺杂剂与单体的摩尔比和沉积时间.当低分子量的聚苯胺微米球和纳米球共存时,其沉积的表面呈现出高的疏水性(接触角θ=148.0°),这主要来源于微/纳米共存的结构导致高的表面粗糙度,能捕获更多的空气所致.FTIR,紫外-可见光谱和X光射线衍射表征了微/纳米球的分子结构及其结晶性.  相似文献   

8.
Heteropolysiloxane coatings were deposited on an electrogalvanized steel substrate by the dip-coating sol-gel technique. Different coating sols using two precursors, aminopropyltriethoxysilane and methyltriethoxysilane, diluted in a water/ethanol mixture with or without the presence of catalyst, were prepared. Thus, coatings incorporating into their structure, both amine and methyl groups of hydrophilic and hydrophobic character, respectively, were obtained.The characterization of the coatings was monitored at the various stages from the sol state to the solid state using several techniques, namely 29Si NMR, SEM, EMPA, XPS, FTIR and Raman spectroscopies, and the mechanical three-point flexure test. The capability of heteropolysiloxane coatings to protect the electrogalvanized steel substrate against humid corrosion and to act as an adhesion promoter has been investigated.  相似文献   

9.
一种水中可溶性导电聚苯胺的制备与表征   总被引:2,自引:0,他引:2  
原玲  隋春红  尹荣  龚剑  瞿伦玉 《化学学报》2006,64(21):2210-2214
分别以聚乙二醇(PEG)的水、乙醇溶液为反应媒介, 制备了Keggin结构杂多酸(H4SiW12O40)掺杂的导电聚苯胺材料. 此聚苯胺经IR, XRD, UV-Vis光谱进行了表征, 并采用标准的四探针法对其电导率进行了测定. 同时系统地研究了杂多酸、氧化剂和单体的比例、反应混合体系温度的改变等对所合成聚苯胺的产率、导电率、水中溶解性等方面的影响. 结果表明, 在PEG乙醇溶液中制备的聚苯胺比在水溶液中制备的有较高的产率、电导率和溶解率. 其最高电导率可达到1.87 S/cm, 溶解率可达53%.  相似文献   

10.
聚苯胺对纳米CdS的光致发光增强效应   总被引:5,自引:0,他引:5  
利用电化学脉冲沉积法在聚苯胺(PANI)膜上制备了纳米CdS/PANI复合膜,并利用扫描电镜光谱、紫外可见光谱、红外光谱、拉曼和荧光等光谱技术表征复合膜的形貌、结构及性质.CdS/PANI复合膜中CdS微粒呈现量子尺寸效应;CdS和PANI间存在相互作用;由于聚苯胺和CdS能级的合适匹配,聚苯胺对CdS的光致发光(PL)有增强效应,增强机理为光生载流子的传递机理.  相似文献   

11.
静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征   总被引:1,自引:0,他引:1  
利用静电纺丝技术,以聚丙烯腈(PAN)和苯胺(ANI)为前驱物,用过硫酸胺(APS)溶液在低温下缓慢氧化聚合,制备了PAN/PANI复合纳米纤维,直径约500 nm.通过扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)和激光拉曼(RAMAN)光谱仪等测试手段对材料的形貌和结构进行了表征.探讨了材料制备过程中影响纤维形貌、尺寸、均匀度的因素和PANI含量对复合纤维导电性能的影响,结果表明,PAN浓度、ANI的加入量和电压是影响纤维特性的主要因素;PANI在PAN基体中呈纳米尺寸分布,复合纳米纤维具有良好的导电性能,导电率可达10-2S/cm.  相似文献   

12.
This work deals with the structural and vibrational characterization of PANI nanofibers prepared through interfacial polymerization using different concentrations of HCl aqueous solution. The results were compared to those obtained by PANI prepared through the conventional route. X-ray diffraction and small-angle X-ray scattering techniques showed that high concentrations of HCl solutions used in the preparation of the PANI nanofibers reduce their crystallinity. The increase of regions with granular morphology was also observed in the scanning electron microscopy images. The changes in the resonance Raman spectra from 200 to 500 cm (-1), FTIR spectra, and the EPR data of the PANI nanofibers reveal an increase in the torsion angles of C ring-N-C ring segments owing the formation of bipolarons in the PANI backbone higher than the PANI samples prepared by conventional route.  相似文献   

13.
近红外光谱用于低温水结构的分析   总被引:1,自引:0,他引:1  
采用近红外光谱分析并结合拉曼光谱和分子动力学模拟研究了二甲基亚砜(DMSO)-水混合物中水在低温时的结构,对DMSO降低水冰点的机理进行了讨论.通过对不同DMSO含量混合物的近红外和拉曼光谱分析,发现了DMSO与水相互作用的光谱信息,表明DMSO与水在混合物中主要以摩尔比1∶2和2∶1的氢键结构(DW2和D2W)的形式存在,结构形式主要取决于DMSO和水在混合物中的比例.通过对水和30%(摩尔分数)DMSO-水混合物的温控近红外光谱分析,发现DW2结构抑制四面体水结构的形成是混合物冰点降低的主要原因.采用分子动力学模拟对DMSO-水混合物体系进行的模拟进一步证明了结论的可靠性.  相似文献   

14.
This work emphasizes the important role of the synthetic parameters in the structure of the polymeric material obtained in the aniline polymerization. The polymers formed by the oxidative polymerization of aniline by copper(II) ions in acidic aqueous solution, acetonitrile/water medium, and also copper(II) acetate complex encapsulated into MCM-41 molecular sieve were characterized by resonance Raman spectroscopy using three exciting laser lines and other techniques such as UV-vis, FTIR, and XANES (Nitrogen K edge). Additionally the products were investigated by thermogravimetric analysis and powder X-ray diffraction. When Cu(II) ions in acidic aqueous medium are used, emeraldine salt (ES-PANI) is formed through the usual head-to-tail polymerization mechanism, while in acetonitrile/water medium a polymer is observed having mainly phenazine-like rings, quinonediimine, and/or phenylenediamine segments in the chains, suggesting that a distinct mechanism is operating. The average molecular weights of the free polymers synthesized in water and in acetronile/water were, respectively, ca. 37 300 and 16 900 Da. The encapsulated polymer synthesized in Cu(II)-MCM-41 is a polymeric mixture of (i) ES-PANI and (ii) the polymer obtained when this metal cation was used as oxidant in acetonitrile/water medium. All the characterization data were compared to those ones obtained for standard free polyaniline and also for the encapsulated polymer into mesoporous MCM-41 formed by using persulfate in acidic aqueous medium as oxidant.  相似文献   

15.
Thin-film composite reverse osmosis membranes of polyamides were prepared by interfacial polymerization. Various benzenediamines and poly(aminostyrene) were interfacially reacted with various acyl chlorides to prepare a skin layer of composite membranes. Among the membranes prepared from the structural isomeric monomers of benzenediamines and acyl chlorides, i.e., the same chemical composition but different in the position of functional groups on the aromatic ring, the membrane with the best salt rejection was obtained when the reacting groups forming amide are located at the same position on the aromatic ring. Membranes prepared by interfacially reacting various diamines with trimesoyl chloride revealed that the salt rejection depends on the linear chain structure of polyamides and network formed by crosslinking. Membranes obtained by interfacial polymerization of poly(aminostyrene) with trimesoyl chloride showed higher water flux but lower salt rejection than those obtained by interfacial polymerization of various benzenediamines with trimesoyl chloride. Membranes obtained here showed the typical trade-off behavior between salt rejection and water flux. However, membranes prepared by interfacially reacting trimesoyl chloride with a mixture of poly(aminostyrene) and m-phenylenediamine or a mixture of poly(aminostyrene), m-phenylenediamine, and diaminobenzoic acid showed a performance advantage over usual membranes, i.e., a large positive deviation from the usual trade-off trend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 1821–1830, 1998  相似文献   

16.
Polyaniline (PANI) nanotubes were prepared by oxidative polymerization of aniline in the presence of two structure-directing agents—salicylic acid (SA) and sodium dodecyl sulfate (SDS). When using only SA, mainly aggregated nanotube dendrites or coral-like structures have been obtained. Addition of a very small amount of the surfactant SDS, much less than the critical micelle concentration, results in substantial reduction of the aggregated nanotube morphology on the account of isolated PANI nanotubes, which is the favorable structure from the point of view of further modification. In order to make the isolated nanotubes water dispersible, their surface was modified by complex formation (non-covalent grafting) with hydrophilic poly(ethylene oxide)-block-poly(acrylic acid) copolymer. These water-dispersible PANI nanotubes might be good candidates for some biochemical and biomedical applications.  相似文献   

17.
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.  相似文献   

18.
Novel nanocomposite polymeric membranes containing nanosized (30–100 nm) polyaniline (PANI) particles dispersed in poly(vinyl alcohol) (PVA) were prepared and used in the pervaporation separation of water–isopropanol feed mixtures ranging from 10 to 50 mass% of water at 30 °C. Of the three nanocomposite membranes prepared, the membrane containing 40:60 surface atomic concentration ratio of PANI:PVA produced the highest selectivity of 564 compared to a value of 77 observed for the plain PVA membrane. Flux of the nanocomposite membranes was lower than those observed for the plain PVA membrane, but selectivity improved considerably. Membranes were characterized by differential scanning calorimetry, dynamic mechanical thermal analyzer, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The highest selectivity with the lowest flux was observed for 10 mass% water containing feed mixture. Flux increased with increasing amount of water in the feed, but selectivity decreased considerably. These results were attributed to the acid-doped PANI particles in the PVA membrane as a result of change in the micromorphology of the nanocomposite membranes. In addition, molar mass between cross-links and fractional free volume of the membranes are responsible for the varying membrane performance. Temperature effect on permeability was investigated for 10 mass% water containing feed with the membrane containing higher concentration of PANI particles, the presence of which could be responsible for varied effect of water permeation through the membrane. Membranes of this study could remove as much as 98% of water from the feed.  相似文献   

19.
This paper describes the influence of polyaniline (PANI) nanoparticles prepared in the presence of the nitrilotriacetic acid (NTA) in comparison with PANI prepared by standard techniques, on mixed microbial cultures in the form of a biological extract from soil and activated sludge and partially digested sludge, both sourced from a municipal wastewater treatment plant. The presence of PANI prepared by standard techniques in aqueous environment has a negative effect on the activity of mixed microbial cultures in the form of activated sludge, digested sludge (anaerobic conditions), and natural soil. According to biological oxygen demand (BOD) values—respirometric test, the slight inhibiting effect of nanoparticles is attributed to impurities and oligomers from aniline polymerization. The use of NTA in the production of PANI, resulted in nanotubes with channels through which NTA is incorporated into the structure. A sample thus obtained shows higher values of BOD, which is associated with the fact that NTA is released from PANI nanotube channels followed by its biodegradation.  相似文献   

20.
Polyaniline (PANI) samples were prepared by the oxidation of aniline with ammonium peroxodisulfate in a reaction vessel placed in a bath thermostated to particular temperature, Tb, from −20 °C to 40 °C. Temperature–time profiles of reaction mixtures were monitored except for the reaction at −20 °C that proceeded in the solid state. The temperature regime was found to influence the molecular structure, morphology, crystallinity and electrical conductivity of PANI. The increase in Tb results in an increased content of meanwhile unspecified structure defects in the formed PANI chains (the presence of attached self-doping groups is improbable), decreased crystallinity, toughness and compactness of PANI microparticles and increased steepness of the temperature dependence of PANI conductivity. The PANI prepared in the solid-state polymerization at −20 °C shows, besides a rather high crystallinity, the unusually high position of the quinonoid band maximum: 643 nm, which suggests a high regularity of its chains. A correlation between the temperature dependence of PANI conductivity at low temperatures (range from 13 to 318 K) on one hand and the temperature regime of PANI preparation on the other hand, is reported for the first time. The dependences obtained only poorly meet the variable random hopping model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号