首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two well known approaches are considered to analyze the processes of counter-current and dual counter-current chromatography: the longitudinal mixing cell model and the Craig's counter-current distribution model. The cell model represents perfectly mixed, equally sized cells in series. The number of cells characterizes the rates of longitudinal mixing in the stationary and mobile phases. In the eluting counter-current distribution (CCD) model, the CCC process is considered as a continuous form of Craig's counter-current distribution. For a cascade of equilibrium stages theoretical elution profiles of the CCC process by using the CCD and cell model approaches have been compared. It is shown that in general, distribution functions of the CCD and cell models differ. It is established that the distribution of a solute between two solvent phases in the dual CCC process is determined by the extraction factor c, the total number of equilibrium stages n and the position of the sample inlet m by the equation Q(x)=(1-c(m))/(1-c(n+1)) with c=F(2)K(D)/F(1) (K(D), F(1), F(2) and Q(x) are the distribution constant, the phase flow-rates and the portion of solute eluted by the first phase, respectively).  相似文献   

2.
The main feature of counter-current chromatography (CCC) is that the stationary phase is a liquid as well as the mobile phase. The retention volumes of solutes are directly proportional to their distribution coefficients K(D) in the biphasic liquid system used in the CCC column. Solutes with high K(D) coefficients are highly retained in the column. The back-extrusion method (BECCC) uses the fact that the liquid stationary phase, that contains the retained solutes, can be easily moved. Switching the column inlet and outlet ports without changing the liquid phase used as the mobile phase causes the rapid collapse of the two immiscible liquid phases inside the column, the previously stationary phase being gathered at the new column outlet. Then this previously stationary liquid phase is extruded outside the CCC column carrying the retained solutes. The back-extrusion method is tested with a standard mixture of five compounds and compared with the recently described elution-extrusion method. It is shown that the chromatographic resolution obtained during the back-extrusion step is good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. However, a major drawback of the BECCC method is that all solutes are split between the liquid phases according to their distribution ratios when the CCC column equilibrium is broken. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode, eluting solutes with small and medium distribution ratios. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column and produce a broad peak showing after the stationary phase extrusion.  相似文献   

3.
Countercurrent chromatography (CCC) is a separation technique using a biphasic liquid system and centrifugal forces to maintain a support-free liquid stationary phase. Either one of the two phases can be the liquid stationary phase. It is even possible to switch the phase role during the separation. The dual-mode method is revisited recalling its theoretical background. The multi-dual mode (MDM) CCC method was introduced to enhance the resolution power of a CCC column. The theoretical study of the MDM method is validated by modeling the separation of two solutes. The basic hypothesis is that the forward step (partial classical elution) is followed by a backward step that returns the less retained solute to the column head. The equations show that the most important parameter to maximize resolution is not the number of MDM steps but the total volume of liquid phases used to elute the solutes. The model is validated calculating correctly the peak position of previously published MDM experiments.  相似文献   

4.
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.  相似文献   

5.
Basing on the perfect replacement approach the equilibrium cell model is developed to describe the separation process in elution-extrusion counter-current chromatography (EECCC). As is known, EECCC consists of three steps: classical elution, sweeping elution, and extrusion. The perfect replacement approach means that during sweeping elution step, the mobile phase contained in the column moves and interacts with the "old" stationary phase in the same mode as during the classical elution step; the "new" and "old" stationary phases do not mix; and after the contacting with the mobile phase the concentration of solutes in the "old" stationary phase remains constant and this stationary phase volume is pushed ahead to the exit of the column. Equations are presented allowing the simulation of the chromatogram of solutes eluted from the column with the mobile phase during the elution period and the chromatogram of solutes pushed out of the column with the stationary phase during the extrusion period of EECCC. These equations can help to choose the optimal conditions for conducting elution-extrusion counter-current chromatography.  相似文献   

6.
7.
The retention behavior of a heterogeneous group of solutes has been examined on seven different stationary phases under isothermal and temperature-programmed conditions. Both ΔHv (enthalpy of solute vaporization from the stationary phase) and ΔSv (entropy of solute vaporization from the stationary phase) values were determined for each solute – stationary phase combination under isothermal conditions. Both program rate and carrier gas velocity were shown to affect solute elution order. Unless these and other experimental factors discussed are controlled, column equivalency studies based on solute elution order have dubious value.  相似文献   

8.
Comprehensive gas chromatography (GC x GC) is now established as a powerful technique, which offers unprecedented separation power. For complex samples, the distribution of peaks in the two-dimensional (2D) space still may need to be optimised. Since temperature (T) is a critical variable, and compounds can be shifted in relative positions on column 1 arising from temperature program rate (rT) changes, and since retention in the second dimension, D2 (2tR) is likewise affected by the prevailing T (elution temperature; Te), then any factors which alter Te will affect the extent of separation in D2. Since temperature program and carrier gas velocity rate will affect the Te of the solutes, these two factors are considered in this paper. Apart from these two parameters, results of different stationary phase choice for the second dimension column as well as the second dimension column length are reported. rT is found to have the most profound impact on the Te of solutes and will be more likely to cause an inversion of elution order if such behaviour can occur. Peak widths and 2tR increase with a decrease in Te. On the other hand, flow-rate has less impact on peak widths and 2tR although Te is affected by a change in flow-rate. Specific solute-stationary phase interactions will cause the elution order of certain solutes to be altered, and may be observed when a different stationary phase is employed as the second column, depending on the solute-stationary phase separation mechanism. Experiments conducted on different second dimension column length showed that although a longer column will lead to better separations, wrap-around may confound the separation process and may cause the solutes from sequential modulation events to co-elute. Thus a suitable second dimension column phase and length must be employed in order to obtain good separation. The factors investigated in this study will cause different extents of changes in the solute elution order and solute separations, and will affect the 2D contour presentation.  相似文献   

9.
By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.  相似文献   

10.
The chromatographic elution has been studied from different perspectives. However, in spite of the simplicity and evident deficiencies of the plate model proposed by Martin and Synge, it has served as a basis for the characterization of columns up-to-date. This approach envisions the chromatographic column as an arbitrary number of theoretical plates, each of them consisting of identical repeating portions of mobile phase and stationary phase. Solutes partition between both phases, reaching the equilibrium. Mobile phase transference between the theoretical plates is assumed to be infinitesimally stepwise (or continuous), giving rise to the mixing of the solutions in adjacent plates. This yields an additional peak broadening, which is added to the dispersion associated to the equilibrium conditions. It is commonly assumed that when the solute concentration is sufficiently small, chromatographic elution is carried out under linear conditions, which is the case in almost all analytical applications. When the solute concentration increases above a value where the stationary phase approximates saturation (i.e. becomes overloaded), non-linear elution is obtained. In addition to overloading, another source of non-linearity can be a slow mass transfer. An extended Martin and Synge model is here proposed to include slow mass-transfer kinetics (with respect to flow rate) between the mobile phase and stationary phase. We show that there is a linear relationship between the variance and the ratio of the kinetic constants for the mass transfer in the flow direction (τ) and the mass transfer between the mobile phase and stationary phase (ν), which has been called the kinetic ratio (κ=τ/ν). The proposed model was validated with data obtained according to an approach that simulates the solute migration through the theoretical plates. An experimental approach to measure the deviation from the equilibrium conditions using the experimental peak variances and retention times at several flow rates is also proposed.  相似文献   

11.
Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak boundaries; and elution peaks are monitored with a pH flow meter for compounds with no chromophore. Since 1994, over 70 research papers on pH-zone-refining CCC have been published with the trends increasing in the recent years.  相似文献   

12.
单亦初  张玉奎  赵瑞环 《色谱》2002,20(4):289-294
 根据溶质在柱内的迁移规律 ,建立了一种利用线性梯度实验快速获得溶质保留值方程系数 ,然后以串行响应函数为优化指标进行多台阶梯度分离条件优化的方法。与利用等度实验获得保留值方程的方法相比 ,该法可以大大缩短优化时间。通过该方法对芳香胺和衍生化氨基酸样品进行了分离 ,获得了满意的分离度 ,表明该方法的预测精度很好。  相似文献   

13.
A comparison is made between the use of a silica-based monolithic column and a RP-AmideC16 column for the separation of phenol, thymol and carvacrol using reversed-phase liquid chromatography. The best results concerning total analysis time and sensitivity were obtained using the monolithic column. Detection was optimized using a fluorimetric detector which allowed better detection limits that those obtained with a photo-diode array spectrophotometer. Gradient elution with acetonitrile–water mixtures as mobile phases permitted good separation of the phenols. Identification of the peaks was based on their retention characteristics, varying the flow-rate, nature and composition of the mobile phase as well as the nature of the stationary phase, and using the fluorimetric detector to continuously measure the spectrum when the solute passed through the flow cell. Linearity, precision, recovery and sensitivity were satisfactory. The procedure was applied to the analysis of phenol, thymol and carvacrol in honey of different types. The extraction process was very simple, only involving dissolution of honey with water. Detection limits in the honey samples using the proposed procedure were between 1 and 4 ng g−1.  相似文献   

14.
Countercurrent chromatography (CCC) is a liquid chromatography technique in which the stationary phase is also a liquid. The main chemical process involved in solute separation is partitioning between the two immiscible liquid phases: the mobile phase and the support-free liquid stationary phase. The octanol-water partition coefficients (P(o/w)) is the accepted parameter measuring the hydrophobicity of molecules. It is considered to estimate active principle partitioning over a biomembrane. It was related to the substance biological activity. CCC is able to work with an octanol stationary phase and an aqueous mobile phase. In this configuration, CCC is a useful and easy alternative to measure directly the P(o/w) of the molecules compared to other methods including the classical and tedious shake-flask method. Three ketones are used as model compounds to illustrate the CCC protocol of P(o/w) measurement. The focus of this work is put on ionisable molecules whose apparent P(o/w) is completely changed by ionization. β-Blockers, diuretics and sulfonamides are compound classes that were studied. Some of the experimentally determined P(o/w) coefficients of the molecular forms disagreed with calculated and experimental values available in the literature. The P(o/w) coefficients of the ionic forms and the acidity constants were also calculated using a theoretical model. Relationships between biological properties and hydrophobicity are also discussed.  相似文献   

15.
There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.  相似文献   

16.
Traditional Chinese medicines (TCMs) have attracted much attention in recent years. Elution-extrusion and/or back-extrusion counter-current chromatography (EECCC/BECCC) both take full advantage of the liquid nature of the stationary phase. They effectively extend the solute hydrophobicity window that can be studied and rendered the CCC technique particularly suitable for rapid analysis of complex samples. In this paper, a popular traditional Chinese medicine, Evodia rutaecarpa, was used as the target complex mixture for extrusion CCC separations. With a carefully selected biphasic liquid system (n-hexane/ethyl acetate/methanol/water, 3/2/3/2, v/v) and optimized conditions (VCM = VC, mobile phase flow rate: 3 mL/min in descending mode, sample loading: 100 mg), five fractions could be obtained in only 100 min on a 140-mL capacity CCC instrument using both elution- and back-extrusion methods. Each fraction was analyzed and identified compared with the data of major standards using LC/MS. Moreover, the performance of both extrusion protocols was systematically compared and summarized. EECCC could be operated continuously and was found extremely suitable for high-throughput separation; however, post-column addition of a clarifying reagent is recommended to smooth the UV-signal during the extrusion process. Considering BECCC, the practical operation is very simple by just switching a 4-port valve to change the flow direction. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode so that solutes with small and medium distribution constants have been eluted. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column, mix together and produce a broad peak showing in the mobile phase eluting after the stationary phase extrusion. Compared with classical CCC or other preparative separation tools, extrusion CCC approaches exhibit distinguished superiority in the modernization process of traditional Chinese medicines.  相似文献   

17.
The dispersion behavior of solutes was investigated in a rotating flowing coiled tube. Potassium iodide, tartrazine, ascorbic acid, lysozyme, bovine serum albumin (BSA), and silver nanoparticle (AgNPs) samples were eluted in a coiled tube of counter-current chromatography (CCC) apparatus with a single phase. Apparent convection peaks of low-diffusivity solutes appeared in the static CCC tube, while Gaussian-like peaks showed up for the high-diffusivity solutes. When the rotation speed of the CCC apparatus was elevated, all solute peak widths became smaller, and the convection peaks of AgNPs and BSA were minimized and formed Gaussian-like peaks. The axial dispersions of all solutes were reduced owing to the higher radial mass transfer in the rotating CCC column. The same reasoning could also be used to rationalize other special band shapes encountered in two-phase CCC separations.  相似文献   

18.
Band broadening inside chromatographic columns was studied by Giddings 40 years ago. This theory is revisited pointing out that the band width depends only on the band position, x, inside the column and the height equivalent to a theoretical plate, H, and not on the solute affinity for the stationary phase. The band standard deviation, sigma, inside the column is simply sigma = square root [xH]. This property can be used in countercurrent chromatography (CCC), a chromatographic technique that works with a liquid stationary phase. Two possibilities are presented: 1-extrusion of the liquid stationary phase called elution-extrusion method, and 2-slow motion of the stationary phase in the same direction as the mobile phase, called cocurrent CCC method. A mixture of five steroids, prednisone, prednisolone acetate, testosterone, estrone and cholesterol, with partition coefficient varying from 0.1 to 40, is used with a 53 mL CCC column to show the method capabilities. The elution-extrusion method is discontinuous; however, it allows saving dramatic amounts of solvent and time. Cholesterol could be fully resolved in 2h and 120 mL instead of 7 h and 1.2 L using the classical elution way. The cocurrent CCC method is continuous and was able to resolve cholesterol at baseline in 40 min using 110 mL. Detection is difficult due to the fact that two immiscible liquid phases enter the detector.  相似文献   

19.
Literature lists a number of counter-current chromatography (CCC) models that can predict the retention time and to a certain extent the peak width of a solute eluting from a CCC column. The approach described in this paper distinguishes itself from previous reports by relating all model parameters directly to column dimensions and experimental settings. Most importantly, this model can predict a chromatogram from scratch without resorting to traditional calibration using empirical values. The model validation with experimental results obtained across a range of CCC instruments demonstrated that the solute retention time, peak width, and peak resolution could be predicted within reasonable accuracy. Additionally, the effect of several process parameters, such as mobile phase flow rate, rotational speed of the column or β-value, showed that the model is robust and applicable to a wide range of CCC instruments. Overall, this model proved to be a useful tool for parameter estimation and, most significantly, separation optimisation.  相似文献   

20.
Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号