首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究新型萃取剂从硝酸盐介质中萃取分离稀土元素对于后处理工艺具有重要意义。本文报道以甲苯为稀释剂,N,N,N′,N′-四丁基丙二酰胺(TBMA)从硝酸盐介质中萃取铈(Ⅲ)、镝(Ⅲ)、铒(Ⅲ)、镨(Ⅲ)、钐(Ⅲ)、铽(Ⅲ)、铥(Ⅲ)、镱(Ⅲ)的机理。考察了硝酸浓度、TBMA浓度、盐析剂浓度以及温度对上述三价镧系离子分配比的影响。得出萃合物的组成主要是三配体配合物M(NO3)3·3TBMA;计算出萃取反应的条件平衡常数、萃取平衡常数。温度效应研究表明萃取反应主要是焓驱动的。对萃取分离系数以及TBMA萃取三价镧系离子的规律进行了初步研究。  相似文献   

2.
以煤油/辛醇(7:3,V/V)为稀释剂,研究N,N′-二甲基-N,N′-二辛基-3-氧戊二酰胺(DMDODGA)从盐酸介质中萃取三价镧系金属的性能及反应机理;考察了水相盐酸浓度、萃取剂浓度及温度对其萃取性能的影响。结果表明分配比在所研究酸度范围内随盐酸浓度的增加先增大后减小;随萃取剂浓度的增加而增大;萃合物的组成为MCl3.2DMDODGA(M=Sm,Gd,Dy)或MCl3.DMDODGA(M=Er,Lu)。萃取过程为放热反应,升高温度不利于萃取。同时计算出了萃取反应的平衡常数及热力学函数。萃合物的红外光谱表明羰基氧、醚氧均与镧系离子配位。  相似文献   

3.
N, N, N′, N′-四丁基丙二酰胺萃取Pr3+的研究   总被引:2,自引:0,他引:2  
利用丙二酸二乙酯与二正丁胺反应高收率的制备了N,N,N′,N′-四丁基丙二酰胺(TBMA)萃取剂。研究了硝酸浓度、硝酸锂浓度、萃取剂浓度以及温度等对萃取Pr(Ⅲ)分配比的影响,确定了萃合物的组成,得到了不同稀释剂中萃取反应的热力学数据。结合红外光谱和摩尔电导数据初步推断了萃合物的结构。  相似文献   

4.
本文研究了以磺化煤油为稀释剂,N,N,N'',N''-四(2-乙基己基)-3-氧戊二酰胺(T2EHDGA)从硝酸中对U(Ⅵ)的萃取性能。考察了HNO3浓度、T2EHDGA浓度、盐析剂浓度及温度对萃取性能的影响。该萃取过程为一放热过程,在所研究的条件下没有三相的形成。给出了萃取机理,确定由2个萃取剂分子参与U(Ⅵ)配位,其萃合物组成为UO2(NO3)2·2T2EHDGA。通过红外光谱确定了由羰基及醚氧键参与配位。  相似文献   

5.
研究新型萃取剂从硝酸盐介质中萃取分离稀土元素对于后处理工艺具有重要意义.本文报道以甲苯为稀释剂,N,N,N',N'-四丁基丙二酰胺(TBMA)从硝酸盐介质中萃取铈(Ⅲ)、镝(Ⅲ)、铒(Ⅲ)、镨(Ⅲ)、钐(Ⅲ)、铽(Ⅲ)、铥(Ⅲ)、镱(Ⅲ)的机理.考察了硝酸浓度、TBMA浓度、盐析剂浓度以及温度对上述三价镧系离子分配比的影响.得出萃合物的组成主要是三配体配合物M(NO3)3·3TBMA;计算出萃取反应的条件平衡常数、萃取平衡常数.温度效应研究表明萃取反应主要是焓驱动的.对萃取分离系数以及TBMA萃取三价镧系离子的规律进行了初步研究.  相似文献   

6.
本文合成了4种新型不对称酰胺荚醚萃取剂:N,N′-二甲基-N,N′-二苯基-3-氧戊二酰胺(DMDPhDGA)、N,N′-二甲基-N,N′-二己基-3-氧戊二酰胺(DMDHDGA)、N,N′-二甲基-N,N′-二辛基-3-氧戊二酰胺(DMDODGA)、N,N′-二甲基-N,N′-二癸基-3-氧戊二酰胺(DMDDDGA)。以氯仿为稀释剂,研究了N,N,N′,N′-四丁基-3-氧戊二酰胺(TBDGA)及上述4种萃取剂从硝酸体系中萃取Gd(Ⅲ)的反应机理,得出萃取能力顺序为:DMDHDGA>DMDDDGA>DMDODGA>DMDPhDGA>TBDGA。考察了水相酸度和萃取剂浓度对萃取分配比的影响,得出萃合物中有3个萃取剂分子同时参与配位;并结合红外光谱解释了萃取剂结构与萃取性能的关系。  相似文献   

7.
合成了四取代双酰胺萃取剂N,N,N,′N′-四丁基丁二酰胺(TBSA),并对萃取剂的结构进行了表征。研究了其萃取Pr(Ⅲ)的性能,考察了硝酸浓度、萃取剂浓度、硝酸锂浓度以及温度等对萃取分配比的影响。萃取反应在298K时,TBSA以甲苯为稀释剂时的热力学焓变为-12.83 kJ/mol。萃合物的组成结构为Pr(NO3)3.3TBSA。  相似文献   

8.
本文研究了以磺化煤油为稀释剂,N,N,N′,N′-四(2-乙基己基)-3-氧戊二酰胺(T2EHDGA)从硝酸中对U(Ⅵ)的萃取性能。考察了HNO_3浓度、T2EHDGA浓度、盐析剂浓度及温度对萃取性能的影响。该萃取过程为一放热过程,在所研究的条件下没有三相的形成。给出了萃取机理,确定由2个萃取剂分子参与U(Ⅵ)配位,其萃合物组成为UO_2(NO_3)_2·2T2EHDGA。通过红外光谱确定了由羰基及醚氧键参与配位。  相似文献   

9.
合成了四取代双酰胺萃取剂N,N,N',N'-四丁基丁二酰胺(TBSA),并对萃取剂的结构进行了表征.研究了其萃取Pr(Ⅲ)的性能,考察了硝酸浓度、萃取剂浓度、硝酸锂浓度以及温度等对萃取分配比的影响.萃取反应在298K时,TBSA以甲苯为稀释剂时的热力学焓变为-12.83 kJ/mol.萃合物的组成结构为Pr(NO3)3·3TBSA.  相似文献   

10.
合成了四取代双酰胺萃取剂N,N,N',N'-四丁基丁二酰胺(TBSA),并对萃取剂的结构进行了表征.研究了其萃取Pr(Ⅲ)的性能,考察了硝酸浓度、萃取剂浓度、硝酸锂浓度以及温度等对萃取分配比的影响.萃取反应在298K时,TBSA以甲苯为稀释剂时的热力学焓变为-12.83 kJ/mol.萃合物的组成结构为Pr(NO3)3·3TBSA.  相似文献   

11.
N,N,N‘,N’—四己基丙二酰胺从硝酸介质中萃取铀(Ⅵ)   总被引:2,自引:1,他引:2  
孙国新  鲍猛 《应用化学》1998,15(4):29-32
以甲苯为稀释剂研究了N,N,N',N'-四己基两二酰胺从硝酸介质中萃取硝酸和铀(Ⅵ)的性能.考察了水相硝酸浓度、李取剂浓度、硝酸钠浓度以及温度对萃取分配比的影响,确定了萃合物的组成.借助红外光谱分析了萃合物的结构.求得了萃取硝酸和硝酸铀酰的平衡常数及反应的热力学焓变.与N,N,N',N'-四丁基丙二酰胺萃取铀的性能比较,发现烷基链长的增加减少了三相生成的倾向,但酰胺的萃取能力却下降.  相似文献   

12.
为了研究不同的酰胺夹醚化合物对萃取镧的性能,本文使用N,N′-二甲基-N,N′-二辛基-4-氧庚二酰胺(DMDOOHA)为萃取剂,以1-甲基-3-丁基咪唑六氟磷酸盐离子液体([C4mim+][PF6-])为稀释剂,研究其在水相中萃取La3+的行为,考察了萃取时间,pH,萃取剂的的浓度、及温度对萃取分配比的影响。实验表明,萃取剂在离子液体[C4mim+][PF6-]中对La3+的具有强烈的萃取能力。机理研究表明,在([C4mim+][PF6-]体系中,萃取剂与La3+可能形成3∶1配合物。萃取过程为热力学自发的过程。  相似文献   

13.
N,N,N',N'-四丁基丙二酰胺萃取铀(VI)的机理   总被引:3,自引:0,他引:3  
研究了N,N,N’,N’-四丁基丙二酰胺(TBMA)以甲苯为稀释剂,从硝酸介质中萃取硝酸和铀(Ⅵ)的机理。在该萃取体系中,TBMA和 HNO_3形成 TBMA· HNO_3,和 U(Ⅵ)形成为 UO_2(NO_3)_2· 3TNMA。借助红外光谱分析,确定了在萃合物中NO_3~-不参与UO_2~(2+)的直接配位,并对萃合物中配体的配位方式进行了讨论。  相似文献   

14.
研究了N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)溶于疏水性离子液体咪唑类离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])中对硝酸水溶液体系中四价钍离子(Th4+)的萃取行为。详细考察了接触时间、酸度、Th4+浓度、TODGA浓度、温度对TODGA/[C2mim][NTf2]体系萃取性能的影响。作为对比,我们还考察了TODGA在传统有机溶剂异辛烷中对Th4+的萃取。结果表明:TODGA/[C2mim][NTf2]体系对Th4+的萃取是吸热反应,且在50℃下,能在5 min内达到平衡。萃取体系随着酸度对Th4+的萃取性能先降后增大;Th4+浓度的增大,TODGA浓度的降低,对Th4+的萃取性能下降。TODGA在离子液体萃取体系中比在有机体系中有更好的Th4+萃取效果,特别是在低酸条件下。通过萃取机理研究,推测出在低酸下萃取反应是离子交换且TODGA与Th4+配比为2∶1,在高酸下萃取是中性配位。  相似文献   

15.
研究了新型萃取剂N,N'-二乙基-N,N'-二(丙氧基苯基)-2,6-吡啶二酰胺(1a~1c)对铀酰离子(UO2+2)的络合萃取.结果表明,当不加硝酸或硝酸浓度为6 mol/L时,化合物1a对UO2+2的萃取率分别高达99%和94%.在6 mol/L HNO3的高酸度条件下,化合物1a能实现UO2+2和镧系元素(La,Eu及Yb)的选择性分离[分离比SFU(Ⅵ)/Ln(Ⅲ)20];而化合物1b和1c则可以实现UO2+2和轻镧系元素(La,Eu)之间的分离.双对数图(lg-lg plot)实验结果表明,化合物1a~1c与UO2+2的萃合比在1~2之间,表明同时存在2∶1和1∶1两种比例的萃合物.核磁共振波谱和红外光谱数据证明吡啶氮和羰基氧参与了对UO2+2的配位.  相似文献   

16.
双酰胺萃取剂具有螯合性能,能从硝酸介质中萃取各价态锕系元素。其降解产物对萃取过程影响很小,能够燃尽,易于处理,合成也较容易,因此被认为是在高放废液的分离-嬗变工艺以及稀土湿法冶金等方面很有前途的一类萃取剂,IBGA萃取硝酸、铀(Ⅵ)和钚(Ⅳ)及其配合物结构研究已有报道,但关于从硝酸介质中萃取稀土元素的系统研究报道较少。我们对,IBGA萃取多种稀土元素的性能进行了详细考察,本文报道镧(Ⅲ)、镨(Ⅲ)、钆(Ⅲ)和铒(Ⅲ)的萃取研究结果。  相似文献   

17.
首次合成了四种N,N′-双(2-吡啶甲酰胺)-1,4-二乙烯三胺(L=C16H19N5O2)稀土配合物。经过元素分析、红外光谱、热重分析和摩尔电导值的分析,确定配合物的组成为[Ln(H3L)(NO3)2].NO3.C l3.3H2O,(Ln=La(Ⅲ),Eu(Ⅲ),Gd(Ⅲ),Ho(Ⅲ))。光谱测试结果表明:配体中两个酰胺基氧和两个吡啶氮分别与稀土离子配位,两个硝酸根均为双齿配体,稀土离子的配位数为8,Ln(Ⅲ)与H3L形成了1∶1的配合物。另外,进一步采用荧光光谱、表面增强拉曼光谱和粘度法研究了系列配合物与DNA的作用情况。研究结果表明,系列配合物与DNA之间存在相互作用,其作用模式主要为沟面结合和静电作用。  相似文献   

18.
N,N,N',N'-四丁基丙二酰胺萃取铀(VI)的机理   总被引:7,自引:0,他引:7  
研究了N,N,N',N'-四丁基丙二酰胺(TBMA)以甲苯为稀释剂,从硝酸介质中萃取硝酸和铀(Ⅵ)的机理。在该萃取体系中,TBMA和HNO3形成TBMA·HNO3,和U(Ⅵ)形成为UO2(NO3)2·3TNMA.借助红外光谱分析,确定了在萃合物中NO3-不参与UO22+的直接配位,并对萃合物中配体的配位方式进行  相似文献   

19.
采用混合酸酐法合成了两种双二苷酰胺(bisdiglycolamide,BisDGA)萃取剂:N,N,N'',N''-四正辛基-N',N″-乙二基-双二苷酰胺(TOE-BisDGA)和N,N,N'',N''-四正辛基-N',N″-间苯二甲基-双二苷酰胺(TOXBisDGA).以磺化煤油和正辛醇混合溶液(体积比90∶10)作稀释剂,研究了它们在硝酸溶液中对Eu(Ⅲ)和Am(Ⅲ),以及自身对HNO3的萃取行为.结果表明,2种BisDGAs对HNO3均有一定萃取,当酸度不超过1.0 mol/L时,二者形成1∶1型的萃合物.随HNO3浓度增加,Eu(Ⅲ)和Am(Ⅲ)的萃取分配比增加.相同条件下,TOE-BisDGA对Eu(Ⅲ)和Am(Ⅲ)的萃取能力强于TOX-BisDGA.斜率分析表明TOE-BisDGA和TOXBisDGA与Eu(Ⅲ)和Am(Ⅲ)均形成2∶1型的萃合物.温度升高,萃取分配比下降,萃取反应是放热反应.2种BisDGAs对Eu(Ⅲ)的亲和力强于对Am(Ⅲ)的亲合力,表明BisDGAs对Eu(Ⅲ)有一定的选择性.同时,研究了BisDGAs萃取Eu(Ⅲ)和Am(Ⅲ)的机理,给出了表观萃取平衡常数和萃取反应热力学函数ΔH,ΔS和ΔG的值.此外,还对TOE-BisDGA和TOX-BisDGA与Eu(Ⅲ)形成的配合物进行了红外和紫外光谱分析.  相似文献   

20.
双酰胺萃取剂由于具有螯合性能,能从硝酸介质中萃取三价、四价、六价锕系元素,从而引起研究者的广泛兴趣[1,2]。其降解产物对萃取过程影响很小,能够燃尽,易于处理,合成也较容易,因此在核燃料后处理及绿色萃取化学方面具有很好的发展前景。丙二酰胺类萃取剂原料易得、合成方法简单,因此其萃取锕系[3 ̄7]、镧系元素[8 ̄11]以及硝酸[12]等的性能及机理报道较多,但TBMA萃取镧系元素形成的萃合物的晶体结构未见文献报道。对此类配合物空间结构及配位构型的研究不仅有助于萃取机理的分析,同时将为新萃取剂的设计提供理论依据。另外,萃合物的红外…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号