首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper provides a primer in quantum field theory (QFT) based on Hopf algebra and describes new Hopf algebraic constructions inspired by QFT concepts. The following QFT concepts are introduced: chronological products, S ‐matrix, Feynman diagrams, connected diagrams, Green functions, renormalization. The use of Hopf algebra for their definition allows for simple recursive derivations and leads to a correspondence between Feynman diagrams and semi‐standard Young tableaux. Reciprocally, these concepts are used as models to derive Hopf algebraic constructions such as a connected coregular action or a group structure on the linear maps from S (V) to V. In many cases, noncommutative analogues are derived (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The Hopf algebra of renormalization in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalization endows T(T(B)+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalization turns S(S(B)+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalization is recovered when the elements of S1(B) are not renormalized, i.e., when Feynman diagrams containing one single vertex are not renormalized. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)+) and the Faà di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra is given. Finally, the bialgebra S(S(B)+) is shown to give the same results as the standard renormalization procedure for the scalar field.  相似文献   

3.
Moving beyond the classical additive and multiplicative approaches, we present an “exponential” method for perturbative renormalization. Using Dyson’s identity for Green’s functions as well as the link between the Faà di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota–Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counter-factors and of order n bare coupling constants).  相似文献   

4.
We show how the Hopf algebra of rooted trees encodes the combinatorics of Epstein-Glaser renormalization and coordinate space renormalization in general. In particular, we prove that the Epstein-Glaser time-ordered products can be obtained from the Hopf algebra by suitable Feynman rules, mapping trees to operator-valued distributions. Twisting the antipode with a renormalization map formally solves the Epstein-Glaser recursion and provides local counterterms due to the Hochschild 1-closedness of the grafting operator B+.submitted 29/03/04, accepted 01/06/04  相似文献   

5.
We extend the results we obtained in an earlier work [1]. The cocommutative case of ladders is generalized to a full Hopf algebra of (decorated) rooted trees. For Hopf algebra characters with target space of Rota-Baxter type, the Birkhoff decomposition of renormalization theory is derived by using the double Rota-Baxter construction, respectively Atkinsons theorem. We also outline the extension to the Hopf algebra of Feynman graphs via decorated rooted trees.submitted 16/03/04, accepted 09/09/04This revised version was published online in May 2005 with correction to the addresses.  相似文献   

6.
We propose a new formalism for quantum field theory (QFT) which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e., it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively differential renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse–Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a non-perturbative definition of field theory in non-integer dimension.  相似文献   

7.
Using the representation for renormalization group functions in terms of nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the ε-expansion. We calculate the Feynman diagrams using the sector decomposition technique generalized to critical dynamics problems.  相似文献   

8.
Representations of solutions of Lindblad equations by randomized Feynman integrals over trajectories are obtained by averaging similar representations for solutions of stochastic Schrödinger equations (Schrödinger–Belavkin equations). An approach based on the application of Chernoff’s theorem is applied. First, (randomized) Feynman formulas approximating Feynman path integrals are obtained; these formulas contain integrals over finite Cartesian powers of the space of values of the functions over which the Feynman integrals are taken.  相似文献   

9.
The article is devoted to Gaussian quasi‐measures and Feynman integrals on infinite‐dimensional spaces with values in the octonion algebra. Their characteristic functionals are studied. Products and convolutions of characteristic functionals and quasi‐measures are investigated. Theorems about properties of octonion‐valued Gaussian quasi‐measures and Feynman integrals are proved. Applications of the Feynman integration over octonions to quantum mechanics and partial differential equations are outlined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with two Hopf algebras which are the non-commutative analogues of two different groups of formal power series. The first group is the set of invertible series with the group law being multiplication of series, while the second is the set of formal diffeomorphisms with the group law being a composition of series. The motivation to introduce these Hopf algebras comes from the study of formal series with non-commutative coefficients. Invertible series with non-commutative coefficients still form a group, and we interpret the corresponding new non-commutative Hopf algebra as an alternative to the natural Hopf algebra given by the co-ordinate ring of the group, which has the advantage of being functorial in the algebra of coefficients. For the formal diffeomorphisms with non-commutative coefficients, this interpretation fails, because in this case the composition is not associative anymore. However, we show that for the dual non-commutative algebra there exists a natural co-associative co-product defining a non-commutative Hopf algebra. Moreover, we give an explicit formula for the antipode, which represents a non-commutative version of the Lagrange inversion formula, and we show that its coefficients are related to planar binary trees. Then we extend these results to the semi-direct co-product of the previous Hopf algebras, and to series in several variables. Finally, we show how the non-commutative Hopf algebras of formal series are related to some renormalization Hopf algebras, which are combinatorial Hopf algebras motivated by the renormalization procedure in quantum field theory, and to the renormalization functor given by the double-tensor algebra on a bi-algebra.  相似文献   

11.
In this paper, we evaluate various analytic Feynman integrals of first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of cylinder type functions defined over Wiener paths in abstract Wiener space. We also derive the analytic Feynman integral of the conditional Fourier-Feynman transform for the product of the cylinder type functions which define the functions in a Banach algebra introduced by Yoo, with n linear factors.  相似文献   

12.
In this paper we describe the right-sided combinatorial Hopf structure of three Hopf algebras appearing in the context of renormalization in quantum field theory: the non-commutative version of the Faà di Bruno Hopf algebra, the non-commutative version of the charge renormalization Hopf algebra on planar binary trees for quantum electrodynamics, and the non-commutative version of the Pinter renormalization Hopf algebra on any bosonic field.  相似文献   

13.
We prove that the cofinite dual of the Hopf algebra of polynomials in several variables can be represented as a Hopf algebra ? of exponential polynomials that contains the polynomials as a Hopf subalgebra. We also present some algebras isomorphic to ? whose elements are rational functions or multi-sequences.  相似文献   

14.
Trees, Renormalization and Differential Equations   总被引:1,自引:0,他引:1  
The Butcher group and its underlying Hopf algebra of rooted trees were originally formulated to describe Runge–Kutta methods in numerical analysis. In the past few years, these concepts turned out to have far-reaching applications in several areas of mathematics and physics: they were rediscovered in noncommutative geometry, they describe the combinatorics of renormalization in quantum field theory. The concept of Hopf algebra is introduced using a familiar example and the Hopf algebra of rooted trees is defined. Its role in Runge–Kutta methods, renormalization theory and noncommutative geometry is described.  相似文献   

15.
16.
We reduce the calculation of the vertex parts of p-adic Feynman amplitudes to a recursive procedure for evaluating singular parts of certain integrals. We propose an algorithm for calculating these integrals in the general form. As an example, we consider vertex parts of amplitudes in the ? 4 theory.  相似文献   

17.
In this paper, we introduce a generalized Hopf Galois theory for regular multiplier Hopf algebras with integrals, which might be viewed as a generalization of the Hopf Galois theory of finite-dimensional Hopf algebras. We introduce the notion of a coaction of a multiplier Hopf algebra on an algebra. We show that there is a duality for actions and coactions of multiplier Hopf algebras with integrals. In order to study the Galois (co)action of a multiplier Hopf algebra with an integral, we construct a Morita context connecting the smash product and the coinvariants. A Galois (co)action can be characterized by certain surjectivity of a canonical map in the Morita context. Finally, we apply the Morita theory to obtain the duality theorems for actions and coactions of a co-Frobenius Hopf algebra.  相似文献   

18.
L. Delvaux 《代数通讯》2013,41(1):346-360
In this article we lay the algebraic foundations to establish the existence of trace functions on infinite-dimensional (multiplier) Hopf algebras. We solve the problem within the framework of multiplier Hopf algebra with integrals. By applying this theory to group-cograded multiplier Hopf algebras, we prove the existence of group-traces on group-cograded multiplier Hopf algebras with possibly infinite-dimensional components. We generalize the results as obtained by Virelizier in the case of finite-type Hopf group-coalgebras.  相似文献   

19.
The theory of integrals is used to analyze the structure of Hopf algebroids. We prove that the total algebra of a Hopf algebroid is a separable extension of the base algebra if and only if it is a semi-simple extension and if and only if the Hopf algebroid possesses a normalized integral. It is a Frobenius extension if and only if the Hopf algebroid possesses a nondegenerate integral. We give also a sufficient and necessary condition in terms of integrals, under which it is a quasi-Frobenius extension, and illustrate by an example that this condition does not hold true in general. Our results are generalizations of classical results on Hopf algebras.  相似文献   

20.
This paper deals with the analytic Feynman integral of functionals on a Wiener space. First the authors establish the existence of the analytic Feynman integrals of functionals in a Banach algebra S_α. The authors then obtain a formula for the first variation of integrals. Finally, various analytic Feynman integration formulas involving the first variation are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号