首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suizu K  Kawase K 《Optics letters》2007,32(20):2990-2992
We theoretically propose surface-emitted and collinear phase-matched terahertz (THz)-wave generation in a conventional optical fiber. The third-order nonlinear effect, four-wave mixing (FWM), is used to generate THz waves in an optical fiber. Surface-emitted THz-wave generation via FWM is realized using a single-mode fiber. Perfect phase matching is obtained at ~800 nm and 1.5 microm pumping, and it follows that third-order polarization in an optical fiber has the same phase at any point. In this situation, the optical fiber acts like a phased array antenna of the THz wave. Collinear phase-matching THz waves are obtained under the same conditions as for surface-emitted THz waves, and the THz wave is propagated in the silica cladding of the optical fiber. This is a promising method for realizing a reasonable THz-wave source.  相似文献   

2.
Tunable high-power THz-wave radiation is achieved via a compact eudipleural THz-wave parametric oscillator.The maximum THz-wave output is 1.164 V at 1.755 THz w...  相似文献   

3.
We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.  相似文献   

4.
基于LiNbO3晶体垂直表面输出技术,设计了一台小型化外腔THz参量振荡器。利用小型化灯1064 nm脉冲激光器泵浦MgO:LiNbO3,通过优化设计三波非共线相位匹配的光学参量振荡腔结构,实现THz垂直晶体表面输出,减少LiNbO3晶体对THz波的吸收,提高了THz波输出光束质量。当在泵浦光能量为128 mJ、重复频率为10 Hz时,获得THz波的调谐范围为0.69~3.01 THz,在1.6 THz处获得THz波最大平均功率为10.8 W,脉冲宽度为10 ns,对应THz波能量转换效率为8.4310-6。  相似文献   

5.
We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO? (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO? cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.  相似文献   

6.
Coherent mid-IR sources based on orientation-patterned GaAs (OPGaAs) are of significant interest in diverse scientific, medical, and military applications. The generation of long-wavelength mid-IR beams in OPGaAs using optical parametric oscillation exhibits limitations in the obtainable pulse energy and peak power. The master oscillator power amplifier concept is demonstrated in OPGaAs, by which a mid-IR source based on optical parametric oscillation can be scaled to high energy by amplification of the output of the optical parametric oscillator in an optical parametric amplifier (OPA). A fivefold increase in the pulse energy is obtained using this method by amplifying 3.85μm pulses in an OPGaAs OPA pumped by a Th,Ho:YLF Q-switched laser.  相似文献   

7.
Terahertz (THz) quantum cascade lasers (QCLs) are key elements for high-power terahertz beam generation for integrated applications. In this study, we design a highly nonlinear THz-QCL active region in order to increase the output power of the device especially at lower THz frequencies based on difference frequency generation (DFG) process. It has been shown that the output power increases for a 3.2 THz structure up to 1.2 μW at room temperature in comparison with the reported power of P = 0.3 μW in [1]. The mid-IR wavelengths associated with this laser are λ1 = 12.12 μm and λ2 = 13.93 μm, which are mixed in a medium with high second-order nonlinearity. A similar approach has been used to design an active region with THz frequency of 1.8 THz. The output power of this structure reaches to 1 μW at room temperature where the mid-IR wavelengths are λ1 = 12.05 μm, λ2 = 12.99 μm.  相似文献   

8.
We developed a Cherenkov phase-matching method for monochromatic THz-wave generation using the DFG, process with a lithium niobate crystal, which resulted in both high conversion efficiency and wide tunability. Although THz-wave generation by Cherenkov phase matching has been demonstrated using femtosecond pumping pulses, producing very high peak power, these THz-wave sources are not monochromatic. Our method generates monochromatic and tunable THz, waves using a nanosecond pulsed laser source. We also show that Cherenkov radiation with waveguide structure is an effective strategy for achieving extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7 THz was observed.  相似文献   

9.
We present a synchronously pumped optical parametric oscillator (OPO) based on a single MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) delivering high-repetition-rate picosecond idler output in the mid-infrared. At high power levels, cascaded optical parametric oscillations are observed, from which the forward and backward idler waves are generated in the terahertz (THz) spectral region. We demonstrate the cascaded processes involving THz-wave generation and make explanations for the highorder cascaded optical parametric processes. The cascaded terahertz optical parametric oscillations in a synchronously pumped optical parametric oscillator are reported for the first time to the best of our knowledge.  相似文献   

10.
In this paper, a continuously tunable terahertz (THz) source is obtained using a compact intracavity pumped dual-wavelength optical parametric oscillation operating around 2.1 μm as difference-frequency generation pump source. The tuning range of the THz-wave frequency covers from 0.147 THz to 3.651 THz. Based on the collinear difference-frequency generation in the GaSe crystal, the experiment result shows that our schematic is a good option to construct a compact and portable terahertz source with widely tunable range.  相似文献   

11.
In recent years widely tunable terahertz- (THz-) wave generation from LiNbO(3) optical parametric oscillators (OPO's) has been successfully demonstrated by use of the prism output-coupler method. However, there remains a problem of large absorption loss for generated terahertz waves inside the crystal, so we investigated the cryogenic characteristics of the OPO. We achieved 125-times-higher THz-wave output and 32% reduction of the generation threshold by cooling the crystal to 78 K. This scheme also provides direct loss measurement at THz frequency, and we found that the THz-wave enhancement mechanism is improvement of the gain as well as the reduction of the absorption coefficient.  相似文献   

12.
Sasaki Y  Avetisyan Y  Yokoyama H  Ito H 《Optics letters》2005,30(21):2927-2929
We report on the demonstration of surface-emitted terahertz- (THz-) wave difference-frequency generation from two-dimensional (2D) periodically poled lithium niobate (PPLN). The two orthogonal periodic structures individually compensate for both the phase mismatch of the launched lasers and the generated THz wave. Tunable 1.5-1.8 THz wave generation with a bandwidth of 10-GHz was obtained by use of two 2D PPLN crystals. We also confirmed that THz waves were simultaneously generated into two opposite directions, which suggests the possibility of higher THz-wave output power.  相似文献   

13.
We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser.Through varying the phase matching angle,the tunable THzwave output from 0.79 THz to 2.84 THz is realized.The maximum THz-wave output was 193.2 nJ/pulse at 1.84 THz as the pump power density was 212.5 MW/cm 2,corresponding to the energy conversion efficiency of 2.42×10-6 and the photon conversion efficiency of about 0.037%.When the pump power density changed from 123 MW/cm 2 to 148 MW/cm 2 and 164 MW/cm 2,the maximum output of the THz-wave moved to the high frequency band.We give a reasonable explanation for this phenomenon.  相似文献   

14.
It was shown that the periodically poled LiNbO3-waveguide with period of poling λ≈λ/ng (λ is the wavelength of emitted THz-wave, ng is a refractive index corresponding to optical group velocity) emits THz-wave difference-frequency generation (DFG) in the direction normal to the surface of the planar waveguide. The 5% distinction between the manufactured and required periods of gratings results only in a small deflection (∼6°) of the output THz-beam from the normal direction. The dependence of DFG efficiency on mode size is analyzed. The output THz power at λ=150 μm is estimated as 2 mW, taking into account imperfections in coupling incident beams with guided modes. It was shown that the efficiency of THz-wave DFG in surface-emitting geometry is more than for collinear geometry in bulk crystal, especially in the high-absorption wavelength region. Received: 16 May 2001 / Revised version: 13 August 2001 / Published online: 2 November 2001  相似文献   

15.
采用频率差在太赫兹范围的双波长激光器进行泵浦,利用光纤的四波混频效应,得到结构紧凑、频率可调的窄带太赫兹波源。为减小光纤材料对太赫兹波的吸收,采用了表面发射机制。从耦合波理论出发,详细分析了保偏光纤中的四波混频过程,得到了太赫兹波输出功率的解析表达式,并讨论了实现相位匹配的条件。结果表明,太赫兹波功率与泵浦光功率和光纤长度成正比,与太赫兹波长的3次方成反比。当泵浦光峰值功率为1 kW,在6 THz处得到的太赫兹波峰值功率达350 mW,功率转换效率约为0.01%。通过合理设置泵浦波长,可以实现太赫兹辐射在3~8 THz范围内连续调谐。该方案提供了一种新型的高功率、紧凑型的窄带太赫兹辐射源。  相似文献   

16.
A tunable mid-IR source obtained by difference-frequency generation is demonstrated in a selectively oxidized GaAsAlAs multilayer waveguide. We designed the waveguide to present the required form birefringence for phase matching of the nonlinear interaction. We took special care to lower losses for the mid-IR radiation. IR tunability from 5.2 to 5.6 mum was achieved by variation of the waveguide temperature and one pump wavelength. IR output power as great as 0.12 muW was obtained with the product of two pump powers of 7 mW(2). Losses of ~50 cm(-1) were measured for the mid-IR radiation. These losses are attributed to surface scattering.  相似文献   

17.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

18.
Widely tunable terahertz (THz)-wave generation using difference frequency generation (DFG) in an organic N-benzyl-2-methyl-4-nitroaniline (BNA) crystal was demonstrated. To our knowledge, this is the first report of THz-wave generation by BNA DFG. Large, high-quality single crystals of BNA (phi 8 mm x 30 mm) were grown using the vertical Bridgman method. The nonlinear optical (NLO) coefficient d(33) of the BNA crystal is approximately 234 pm/V, which is the largest value reported for any yellow NLO material. The collinear phase-matching condition of the type-0 configuration is satisfied using a 0.7-1 microm band pump wavelength. We generated THz waves using an organic BNA crystal; the generation range is 0.1-15 THz.  相似文献   

19.
Surface-emitted terahertz- (THz-) wave generation by difference-frequency mixing with ridge-shaped periodically poled lithium niobate (PPLN) was demonstrated. The PPLN had a ridge height of 300 microm, a thickness of 20 microm, and an interaction length of 35 mm. The ridge behaves as a slab waveguide for optical pump beams. The PPLN gives rise to THz waves in opposite directions, perpendicular to the pump-beam direction. Reflecting the THz wave on one side and overlapping it with the THz wave on the other side increased the total THz-wave intensity approximately 2.7 times compared with that without reflection and mixing.  相似文献   

20.
A cw mid-IR coherent source based on difference-frequency generation is designed and characterized. For mid-IR generation, a periodically poled MgO:LiNbO(3) crystal is placed inside a compact Ti:sapphire laser cavity. This provides high-power pump radiation for the nonlinear process. Optical injection by an external-cavity diode laser ensures single-frequency operation of the Ti:sapphire laser, while signal radiation is provided by a fiber-amplified Nd:YAG laser. Mid-IR radiation can be generated with 3850-4540 nm tuning range, narrow linewidth, Cs-standard traceability, and TEM(00) spatial mode. 30 mW power is obtained at 4510 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号