首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The photoionization and dissociative photoionization mechanism of 1,8-dihydroxyanthraquinone (1,8-DHAQ) have been investigated by infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (IR LD/VUV PIMS) technique and theoretical calculations. Consecutive losses of two carbon monoxides and elimination of hydroxyl group are found to be the major fragmentation channels in low photon energy range. Photoionization efficiency (PIE) spectrum of 1,8-DHAQ was measured in the photon energy range of 8.2-15.0 eV. Adiabatic ionization energy (IE) of 1,8-DAHQ (M) and appearance energies (AEs) of the major fragments (M-CO) (+), (M-C 2O 2) (+), and (M-OH) (+) are determined to be 8.54 +/- 0.05, 10.8 +/- 0.1, 11.0 +/- 0.1, and 13.1 +/- 0.1 eV, respectively, which are in fair agreement with calculated results. The B3LYP method with the 6-31+G(d) basis set was used to study fragmentation of 1,8-DHAQ. Theoretical calculations indicate that five lowest-energy isomers of 1,8-DHAQ cations can coexist by virtue of bond rotation and intramolecular proton transfer. A number of decarbonylation and dehydroxylation processes of 1,8-DHAQ cations are well established.  相似文献   

2.
A number of different levels of theory have been tested in TD-CI simulations of the response of butadiene interacting with very short, intense laser pulses. Excitation energies and transition dipoles were calculated with linear-response time-dependent Hartree-Fock (also known as the random phase approximation, RPA), configuration interaction in the space of single excitations (CIS), perturbative corrections to CIS involving double excitations [CIS(D)], and the equation-of-motion coupled-cluster (EOM-CC) method using the 6-31G(d,p) basis set augmented with n = 0-3 sets of diffuse sp functions on all carbons and only on the end carbons [6-31 n+ G(d,p) and 6-31(n+)G(d,p), respectively]. Diffuse functions are particularly important for transitions between the pseudocontinuum states above the ionization threshold. Simulations were carried out with a three-cycle Gaussian pulse (ω = 0.06 au, 760 nm) with intensities up to 1.26 × 10(14) W cm(-2) directed along the vector connecting the end carbons. Depending on the basis set, up to 500 excited states were needed for the simulations. Under the conditions selected, the response was too weak with the 6-31G(d,p) basis set, and the difference between levels of theory was more pronounced. When two or three set of diffuse functions were included on all of the carbons, the RPA, CIS, and EOM-CC results were comparable, but the CIS(D) response was too large compared to the more accurate EOM-CC calculations. Even though the frequency of the pulse is not resonant with any of the ground-to-excited transitions, excitations to valence and pseudocontinuum states occur readily above a threshold in the intensity.  相似文献   

3.
We investigated the spectroscopy of the first excited singlet electronic state S1 of 2-phenylindene using both fluorescence excitation spectroscopy and resonantly enhanced multiphoton ionization spectroscopy. Moreover, we investigated the dynamics of the S1 state by determining state-selective fluorescence lifetimes up to an excess energy of approximately 3400 cm(-1). Ab initio calculations were performed on the torsional potential energy curve and the equilibrium and transition state geometries and normal-mode frequencies of the first excited singlet state S1 on the CIS level of theory. Numerous vibronic transitions were assigned, especially those involving the torsional normal mode. The torsional potentials of the ground and first excited electronic states were simulated by matching the observed and calculated torsional frequency spacings in a least-squares fitting procedure. The simulated S1 potential showed very good agreement with the ab initio potential calculated on the CIS/6-31G(d,p) level of theory. TDDFT energy corrections improved the match with the simulated S(1) torsional potential. The latter calculation yielded a torsional barrier of V2 = 6708 cm(-1), and the simulation a barrier of V2 = 6245 cm(-1). Ground-state normal-mode frequencies were calculated on the B3LYP/6-31G(d,p) level of theory, which were used to interpret the infrared spectrum, the FDS spectrum of the transition and hot bands of the FES spectrum. The fluorescence intensities of the nu49 overtone progression could reasonably be reproduced by considering the geometry changes upon electronic excitation predicted by the ab initio calculations. On the basis of the torsional potential calculations, it could be ruled out that the uniform excess energy dependence of the fluorescence lifetimes is linked to the torsional barrier in the excited state. The rotational band contour simulation of the transition yielded rotational constants in close agreement to the ab initio values for both electronic states. Rotational coherence signals were obtained by polarization-analyzed, time-resolved measurements of the fluorescence decay of the transition. The simulation of these signals yielded corroborating evidence as to the quality of the ab initio calculated rotational constants of both states. The origin of the anomalous intensity discrepancy between the fluorescence excitation spectrum and the REMPI spectrum is discussed.  相似文献   

4.
We carried out laser induced fluorescence and resonance enhanced two-color two-photon ionization spectroscopy of jet-cooled 1-hydroxy-9,10-anthraquinone (1-HAQ). The 0-0 band transition to the lowest electronically excited state was found to be at 461.98 nm (21,646 cm(-1)). A well-resolved vibronic structure was observed up to 1100 cm(-1) above the 0-0 band, followed by a rather broad absorption band in the higher frequency region. Dispersed fluorescence spectra were also obtained. Single vibronic level emissions from the 0-0 band showed Stokes-shifted emission spectra. The peak at 2940 cm(-1) to the red of the origin in the emission spectra was assigned as the OH stretching vibration in the ground state, whose combination bands with the C=O bending and stretching vibrations were also seen in the emission spectra. In contrast to the excitation spectrum, no significant vibronic activity was found for low frequency fundamental vibrations of the ground state in the emission spectrum. The spectral features of the fluorescence excitation and emission spectra indicate that a significant change takes place in the intramolecular hydrogen bonding structure upon transition to the excited state, such as often seen in the excited state proton (or hydrogen) transfer. We suggest that the electronically excited state of interest has a double minimum potential of the 9,10-quinone and the 1,10-quinone forms, the latter of which, the proton-transferred form of 1-HAQ, is lower in energy. On the other hand, ab initio calculations at the B3LYP/6-31G(d,p) level predicted that the electronic ground state has a single minimum potential distorted along the reaction coordinate of tautomerization. The 9,10-quinone form of 1-HAQ is the lowest energy structure in the ground state, with the 1,10-quinone form lying approximately 5000 cm(-1) above it. The intramolecular hydrogen bond of the 9,10-quinone was found to be unusually strong, with an estimated bond energy of approximately 13 kcal/mol (approximately 4500 cm(-1)), probably due to the resonance-assisted nature of the hydrogen bonding involved.  相似文献   

5.
Femtosecond broadband transient absorption experiments of 1-nitropyrene, a nitro-polycyclic aromatic hydrocarbon of environmental concern are presented in cyclohexane and hexane solutions. The transient absorption spectra show the presence of three species that are assigned to the Franck-Condon excited lowest singlet (S1) state, the structurally relaxed S1 state, and the lowest excited triplet state. The spectral changes at early times are interpreted in terms of conformational dynamics; primarily due to an ultrafast rotation of the nitro group in the S1 state. This excited state relaxation is followed by intersystem crossing with a time constant of 7 ps. CIS/6-31G(d,p) calculations predict planarization of the nitro-aromatic torsional angle as the major nuclear relaxation coordinate, from 32.8 degrees at the HF/6-31G(d,p) level of theory in the ground state (27.46 degrees at B3LYP/6-31++G(d,p)) to 0.07 degrees in the S1 state. Vertical excitation energies at the TDDFT/6-31++G(d,p) and TDDFT/IEFPCM/6-31++G(d,p) levels of theory predict a small energy gap (<0.12 eV) between the S1(pipi*) state and the third excited triplet state T3(npi*) in the gas phase and in cyclohexane, respectively. The small energy gap suggests a large spin-orbit coupling between the S1(pipi*) and T3(npi*) states, which explains the ultrafast intersystem crossing of 1-nitropyrene in nonpolar solvents.  相似文献   

6.
Pyrrolocytosine is a novel, environment sensitive, fluorescent base that can be used in place of cytosine as a fluorescent marker in nucleic acids. In this work the results of a detailed computational investigation into the hybridization and photochemical properties of the base are reported. The interaction energy of the base pair formed between pyrrolocytosine and guanine, calculated at the MP2/6-31G(d,0.25)//HF/6-31G(d,p) level, was found to be -27.2 kcal mol(-1), comparing very favorably with the value calculated for the cytosine and guanine base pair, -25.8 kcal mol(-1). The wavelengths for the vertical transitions of pyrrolocytosine and cytosine were determined using both the configuration interaction technique, with singly excited configurations (CIS) and time-dependent density functional theory using the B3LYP functional (TDB3LYP). It was found that the spacing between the first pipi state and the first npi state was significantly larger in the case of pyrrolocytosine than cytosine, providing a rationale for the higher fluorescence quantum yield of the former. Hydrogen bonding of pyrrolocytosine to guanine did not affect the predicted fluorescence properties of pyrrolocytosine whereas stacking guanine above pyrrolocytosine, in a manner appropriate to B-form DNA, significantly reduced the predicted fluorescence. Calculations on the two base systems using the TDB3LYP method produced low-lying charge-transfer states which are not predicted when the CIS method is used and are not thought to be physically meaningful.  相似文献   

7.
Post-Hartree-Fock ab initio quantum chemical calculations were performed for 5-fluorouracil in the gas phase and in a three-water cluster. Full geometry optimizations of the 5-fluorouracil-water complexes were carried out at the MP2/6-31+G(d,p) level of theory. MP4/6-31+G(d,p)//MP2/6-31+G(d,p) and MP4/6-31++G(d,p)//MP2/6-31+G(d,p) single-point calculations were performed to obtain more accurate energies. In water solution, 5-fluorouracil exists mainly in the 2,4-dioxo form (A). We propose that the populations of the 2-hydroxy-4-oxo (B) and 4-hydroxy-2-oxo (D) tautomers are 1 x 10(-4)% and 3.9 x 10(-8)%, respectively, on the basis of the relative stabilities of the tautomers calculated at the MP4/6-31++G(d,p)//MP2/6-31+G(d,p) level of theory. A profound difference between isolated and hydrated 5-fluorouracil is noted for the height of the tautomerization barrier. In the absence of water, the process of proton transfer is very slow. The addition of water molecules decreases the barrier by 2.3 times, making the process much faster. The minimum energy path (MP2/6-31+G(d,p)) for water-assisted proton transfer in trihydrated 5-fluorouracil was followed. CNDO/S-CI calculations predict singlet pi-pi(*) electron transitions at 312 nm for B and at 318 nm for D. The fluorescence spectrum of 5-fluorouracil in water confirms the presence of the hydroxy tautomer.  相似文献   

8.
The semiempirical PM5 method has been used to calculate fully optimized structures of magnesium-bacteriochlorin, magnesium-chlorin, magnesium-porphin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), and d, and bacteriochlorophylls a, b, c, d, e, f, g, and h with all homologous structures. Hartree-Fock/6-31G* ab initio and density functional B3LYP/6-31G* methods were used to optimize structures of methyl chlorophyllide a, chlorophyll c(1), and methyl bacteriochlorophyllides a and c for comparison. Spectroscopic transition energies of the chromophores and their 1:1 or 1:2 solvent complexes were calculated with the Zindo/S CIS method. The self-consistent reaction field model was used to estimate solvent shifts. The PM5 calculations predict planar structure of the porphyrin ring and central position of the four coordinated magnesium atoms in all pigments studied, in accord with the experimental, ab initio, and density functional results, a significant improvement as compared to the older semiempirical PM3 approach. Only small differences in PM5 and B3LYP/6-31G* or Hartree-Fock/6-31G* minimum energy geometries of the reference molecules were observed. Calculations show that in 1:1 solvent complexes, where the magnesium atom is five coordinated, the magnesium atom is shifted out of the plane of the porphyrin ring towards the solvent molecule, while the hexa coordinated 1:2 complexes are again planar. The PM5 method gives atomic charges that are comparable with those obtained from the Hartree-Fock/6-31G* and B3LYP/6-31G* calculations. The single point ZINDO/S CIS calculations with PM5 minimum energy structure gave excellent correlations between calculated and experimental transition energies of the chlorophylls and bacteriochlorophylls studied. Such correlations may be used for prediction of transition energies of the chromophores in protein binding sites. Calculations also predict existence of dark electronic states below the main Soret absorption band in all chromophores studied. The results suggest that the semiempirical PM5 method is a fairly reliable and computationally efficient method in predicting molecular parameters of porphyrin-like molecules.  相似文献   

9.
In order to understand conformational isomerism in methacryloyl bromide (MABR) in the ground (S(0)) and the first excited (S(1)) electronic states and to interpret the vibrational and electronic spectra of its conformers in the S(0) state, quantum mechanical calculations using Density Functional Theory (DFT) and RHF methods with extended basis sets 6-31G, 6-31G** and 6-311+G(d,p) have been conducted. In RHF calculations, electron correlation effects have been included at the M?ller-Plesset MP2 level. It is inferred that in both the electronic states the molecule may exist in two isomeric forms-s-trans and s-cis; the former being more stable than the later by about 1.629 kcal mol(-1) in the S(0) state and by about 2.218 kcal mol(-1) in the S(1) state. Electronic transition tends to increase the s-trans/s-cis and s-cis/s-trans, rotational barriers from 7.059 kcal mol(-1) (2468.1 cm(-1)) and 5.428 kcal mol(-1) (1897.8 cm(-1)) in S(0) state to 23.594 kcal mol(-1) (8249.4 cm(-1)) and 21.376 kcal mol(-1) (7473.9 cm(-1)) in the S(1) state. Completely optimized geometries of the two conformers in S(0) state reveal that while there is no significant difference in their bond lengths, some of the bond angles associated with COBr group are appreciably different. Electronic excitation tends to change both the bond lengths and bond angles. Based on suitably scaled DFT and RHF results obtained from the use of 6-31G** and 6-311+G(d,p) basis sets, a complete assignment is provided to the fundamental vibrational bands of both the s-trans and s-cis conformers in terms of frequency, form and intensity of vibrations and potential distribution across the symmetry coordinates in the S(0) state and a comparison has been made with experimental assignments. A theoretical prediction of the electronic transitions in the near UV-region in the two conformers and their tentative assignment has been provided on the basis of CI level calculations using 6-31G basis set.  相似文献   

10.
The UV fluorescence excitation and dispersed fluorescence spectra of a jet-cooled o-methylaniline have been obtained for the S1 <-- S0 transition, in which some of the bands have been observed and assigned for the first time. The origin of the electronic transition appears at 34,328.4 cm(-1). It was found that the spectra exhibit an important feature corresponding to the internal rotation of the methyl group in the electronic ground and excited states. Ab initio calculations at MP2/6-31 + G* and CIS/6-31 + G* show that the optimised structure of o-methylaniline in the ground state is not planar with the amino group having sp3 hybridation-like character due to the existence of lone paired electrons on the N atom. Upon electronic excitation, the C-N bond exhibits a partial double character, as in the case of other aniline derivatives.  相似文献   

11.
Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. 13C and 1H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

12.
The binding interactions in complexes of Zn(+) with nitrogen donor ligands, (N-L) = pyridine (x = 1-4), 4,4'-dipyridyl (x = 1-3), 2,2'-dipyridyl (x = 1-2), and 1,10-phenanthroline (x = 1-2), are examined in detail. The bond dissociation energies (BDEs) for loss of an intact ligand from the Zn(+)(N-L)(x) complexes are reported. Experimental BDEs are obtained from thermochemical analyses of the threshold regions of the collision-induced dissociation cross sections of Zn(+)(N-L)(x) complexes. Density functional theory calculations at the B3LYP/6-31G* level of theory are performed to determine stable structures of these species and to provide molecular parameters needed for the thermochemical analysis of experimental data. Relative stabilities of the various conformations of these N-donor ligands and their complexes to Zn(+) as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) and M06/6-311+G(2d,2p) levels of theory using the B3LYP/6-31G* optimized geometries. The experimental BDEs for the Zn(+)(N-L)(x) complexes are in reasonably good agreement with values derived from density functional theory calculations. BDEs derived from M06 calculations provide better agreement with the measured values than those based on B3LYP calculations. Trends in the sequential BDEs are explained in terms of sp polarization of Zn(+) and repulsive ligand-ligand interactions. Comparisons are made to the analogous Cu(+)(N-L)(x) and Ni(+)(N-L)(x) complexes previously studied.  相似文献   

13.
Modest basis set level MP2/6-31G(d,p) calculations on the Diels-Alder addition of S-1-alkyl-1-hydroxy-but-3-en-2-ones (1-hydroxy-1-alkyl methyl vinyl ketones) to cyclopentadiene correctly reproduce the trends in known experimental endo/exo and diastereoface selectivity. B3LYP theoretical results at the same or significantly higher basis set level, on the other hand, do not satisfactorily model observed endo/exo selectivities and are thus unsuitable for quantitative studies. The same is valid also with regard to subtle effects originating from, for example, conformational distributions of reactants. The latter shortcomings are not alleviated by the fact that observed diastereoface selectivities are well-reproduced by DFT calculations. Quantitative computational studies of large cycloaddition systems would require higher basis sets and better account for electron correlation than MP2, such as, for example, CCSD. Presently, however, with 30 or more non-hydrogen atoms, these computations are hardly feasible. We present quantitatively correct stereochemical predictions using a hybrid layered ONIOM computational approach, including the chiral carbon atom and the intramolecular hydrogen bond into a higher level, MP2/6-311G(d,p) or CCSD/6-311G(d,p), layer. Significant computational economy is achieved by taking account of surrounding bulky (alkyl) residues at 6-31G(d) in a low HF theoretical level layer. We conclude that theoretical calculations based on explicit correlated MO treatment of the reaction site are sufficiently reliable for the prediction of both endo/exo and diastereoface selectivity of Diels-Alder addition reactions. This is in line with the understanding of endo/exo selectivity originating from dynamic electron correlation effects of interacting pi fragments and diastereofacial selectivity originating from steric interactions of fragments outside of the Diels-Alder reaction site.  相似文献   

14.
使用密度泛函理论(DFT)B3LYP/6-31G(d)方法优化得到了3(5)-(9-蒽基)吡唑及其衍生物的基态(S0)分子结构, 使用单激发组态相互作用(CIS)/6-31G(d)方法优化得到这些分子的第一单重激发态(S1)的几何结构, 并使用含时密度泛函理论(TD-DFT)B3LYP/6-311++G(d,p)方法计算了它们的吸收和发射光谱. 计算结果表明, 与3(5)-(9-蒽基)吡唑相比, 无论取代基是吸电子基团还是供电子基团, 衍生物的吸收和发射峰均发生红移, 并且当取代基―R=―BH2, ―CCl3, ―CHO, ―NH2时衍生物有较长的吸收波长和发射波长.  相似文献   

15.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

16.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

17.
The amino-imino tautomerization of the 4-aminopyrimidine (4APM)/acetic acid (AcOH) system through dual hydrogen bonding in n-hexane at room temperature was investigated using UV absorption and fluorescence spectroscopies, fluorescence time-profile measurements, and molecular orbital calculations, with those of the imino-model compound of 3-methyl-4(1H)-pyrimidinimine (3M4PMI). From the experimental results, it was confirmed that the imino-tautomer was formed in the first excited singlet state (S1) state through the double-proton transfer of the dual hydrogen-bonded complex of 4APM with AcOH. The fluorescences of the free 4APM monomer (band maximum at 353nm), imino-tautomer (at 414nm), and 3M4PMI monomer (at 437nm) exhibit the single-exponential decays of 98, 73, and 19ps time constants, respectively. The shorter decay time of the imino-tautomer fluorescence compared with the free monomer one is suggestive of the low activation energy process in the S1 state. From the result of the shortest decay time of the 3M4PMI fluorescence, it can be deduced that 3M4PMI has a non-planar structure in the S1 state. The theoretical calculations on the S0 and S1 state double-proton transfer for the 4APM/AcOH dual hydrogen-bonded system were performed with the use of formic acid (FoOH) in place of AcOH for the sake of simplicity. Only one peak of transition state was resolved in the S0 and S1 states. The energy barrier for the S1 state double-proton transfer of the 4APM/FoOH complex-->3H-4(1H)-pyrimidinimine/FoOH tautomer was estimated to be approximately 2kJmol(-1) using the CIS/6-31G(d) methods. On the other hand, the energy barrier for the S0 state reverse proton transfer of the 3H-4(1H)-pyrimidinimine/FoOH tautomer-->4APM/FoOH complex was estimated to be almost zero kJmol(-1) at B3LYP/6-31G(d) level.  相似文献   

18.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

19.
Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.  相似文献   

20.
采用密度泛函的B3LYP和单激发组态相互作用(CIS)方法分别对基态和第一、第二单重激发态(S1和S2)结构进行优化,均采用6-31G(d)基组.在优化的基态和第一单重激发态的结构基础上,用含时密度泛函理论(TD-DFT),成功模拟了7-甲氧基香豆素-3-甲酰二乙醇胺的吸收光谱和荧光发射光谱,并用极化连续模型考虑了溶剂的影响.利用前线轨道、电荷密度差(CDD)和态密度(DOS)图分析了电子跃迁的特性.计算结果与实验结果吻合得很好.该量子计算方法对此类化合物的定性和定量研究是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号