首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass power spectrum for a Universe dominated by the Chaplygin gas is evaluated numerically from scales of the order of the Hubble horizon to 100 Mpc. The results are compared with a pure baryonic Universe and a cosmological constant model. In all three cases, the spectrum increases with k, the wavenumber of the perturbations. The slope of the spectrum is higher for the baryonic model and smaller for the cosmological constant model, the Chaplygin gas interpolating these two models. The results are analyzed in terms of the sound velocity of the Chaplygin gas and the moment the Universe begins to accelerate.  相似文献   

2.
We study the fate of density perturbations in a Universe dominate by the Chaplygin gas, which exhibit negative pressure. In opposition to other models of perfect fluid with negative pressure, there is no instability in the small wavelength limit, due to the fact that the sound velocity for the Chaplygin gas is positive. We show that it is possible to obtain the value for the density contrast observed in large scale structure of the Universe by fixing a free parameter in the equation of state of this gas. The negative character of pressure must be significant only very recently.  相似文献   

3.
Zhe Chang  Dong Zhao  Yong Zhou 《中国物理C(英文版)》2019,43(12):125102-125102-8
We test the possible dipole anisotropy of the Finslerian cosmological model and the other three dipole-modulated cosmological models, i.e. the dipole-modulated ΛCDM, wCDM and Chevallier–Polarski–Linder (CPL) models, by using the recently released Pantheon sample of SNe Ia. The Markov chain Monte Carlo (MCMC) method is used to explore the whole parameter space. We find that the dipole anisotropy is very weak in all cosmological models used. Although the dipole amplitudes of four cosmological models are consistent with zero within the \begin{document}$1\sigma$\end{document} uncertainty, the dipole directions are close to the axial direction of the plane of the SDSS subsample in Pantheon. This may imply that the weak dipole anisotropy in the Pantheon sample originates from the inhomogeneous distribution of the SDSS subsample. A more homogeneous distribution of SNe Ia is necessary to constrain the cosmic anisotropy.  相似文献   

4.
A model of the Universe as a mixture of a scalar (inflaton or rolling tachyon from the string theory) and a matter field (classical particles) is analyzed. The particles are created at the expense of the gravitational energy through an irreversible process whereas the scalar field is supposed to interact only with itself and to be minimally coupled with the gravitational field. The irreversible processes of particle creation are related to the non-equilibrium pressure within the framework of the extended (causal or second-order) thermodynamic theory. The scalar field (inflaton or tachyon) is described by an exponential potential density added by a parameter which represents its asymptotic value and can be interpreted as the vacuum energy. This model can simulate three phases of the acceleration field of the Universe, namely, (a) an inflationary epoch with a positive acceleration followed by a decrease of the acceleration field towards zero, (b) a past decelerated period where the acceleration field decreases to a maximum negative value followed by an increase towards zero, and (c) a present accelerated epoch. For the energy densities there exist also three distinct epochs which begin with a scalar field dominated period followed by a matter field dominated epoch and coming back to a scalar field dominated phase.  相似文献   

5.
MOND theory explains the rotation curves of the galaxies. Verlinde’s ideas establish an entropic origin for gravitational forces and Tsallis principle generalizes the theory of Boltzmann–Gibbs. In this work we have promoted a connection between these recent approaches, that at first sight seemed to have few or no points in common, using the Mach’s principle as the background. In this way we have used Tsallis formalism to calculate the main parameters of the Machian Universe including the Hubble parameter and the age of the Universe. After that, we have also obtained a new value for the Tsallis parameter via Mach’s principle. Using Verlinde’s entropic gravity we have obtained new forms for MOND’s well established ingredients. Finally, based on the relations between particles and bits obtained here, we have discussed the idea of bits entanglement in the holographic screen.  相似文献   

6.
7.
The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessence.  相似文献   

8.
Hai-Nan Lin  Yu Sang 《中国物理C(英文版)》2021,45(12):125101-125101-9
We propose that fast radio bursts (FRBs) can be used as probes to constrain the possible anisotropic distribution of baryon matter in the Universe. Monte Carlo simulations show that 400 (800) FRBs are sufficient to detect the anisotropy at a 95% (99%) confidence level if the dipole amplitude has an order of magnitude of 0.01. However, more FRBs are required to tightly constrain the dipole direction. Even 1000 FRBs are insufficient to constrain the dipole direction within the angular uncertainty \begin{document}$\Delta\theta<40^{\circ}$\end{document} at a 95% confidence level. The uncertainty on the dispersion measure of a host galaxy does not significantly affect the results. However, if the dipole amplitude is in the region of 0.001, 1000 FRBs are not enough to correctly detect the anisotropic signal.  相似文献   

9.
We study a model that the entropy per particle in the universe is constant. The sources for the entropy are the particle creation and a decaying term. We find exact solutions for the Einstein field equations and show the compatibility of the model with respect to the age and the acceleration of the universe.  相似文献   

10.
In this paper, we introduce the notion of a (2+1)-dimensional differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrödinger equation and its sister equation, the (2+1)-dimensional coupled derivative nonlinear Schrödinger equation, are shown to describe 3-h.s. The (2+1)-dimensional generalized HF model: St={(1/2i)[S,Sy]+2iσS}x, σx=-(1/4i)tr(SSxSy), in which S∈[GLC(2)]/[GLC(1)×GLC(1)], provides another example of (2+1)-dimensional differential equations describing 3-h.s. As a direct consequence, the geometric construction of an infinite number of conservation laws of such equations is illustrated. Furthermore we display a new infinite number of conservation laws of the (2+1)-dimensional nonlinear Schrödinger equation and the (2+1)-dimensional derivative nonlinear Schrödinger equation by a geometric way.  相似文献   

11.
The parametrized system called the idealclock is turned into an ordinary gauge system andquantized by means of a path integral in which canonicalgauges are admissible. Then the possibility of applying the results to obtain the transition amplitudefor empty minisuperspaces, and the restrictions arisingfrom the topology of the constraint surface, are studiedby matching the models with the ideal clock. A generalization to minisuperspaces with truedegrees of freedom is also discussed.  相似文献   

12.
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.  相似文献   

13.
The effect of the creation of an arbitrary number of massive pairs by a photon in the spatially flat model of the radiation-dominated Universe is considered. The process added-up probability is calculated within the framework of scalar quantum electrodynamics conformally related to the metric of a curved spacetime. The rate of photon decay in the radiation-dominated universe as well as the mean number of the created particles have been found. Comparison of the rate of the pair creation in the photon decays with the rate of the pair creation in the photon-photon collisions which take place in the Minkowski spacetime has been carried out. The estimates having been made show the number density of the particles created in the processes of the photon decays in the radiation-dominated Universe to be by a factor of 1030 higher than the number density of the particles created from the vacuum of the free scalar field by the gravitational background.  相似文献   

14.
The realistic equation of state of strongly interacting matter, that has been successfully applied in the recent hydrodynamic studies of hadron production in relativistic heavy-ion collisions at RHIC, is used in the Friedmann equation to determine the precise time evolution of thermodynamic parameters in the early Universe. A comparison with the results obtained with simple ideal-gas equations of state is made. The realistic equation of state describes a crossover rather than the first-order phase transition between the quark–gluon plasma and hadronic matter. Our numerical calculations show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during such crossover.  相似文献   

15.
Yan-Ze Peng 《Pramana》2005,65(2):177-183
By means of the singular manifold method we obtain a general solution involving three arbitrary functions for the (2+1)-dimensional KdV equation. Diverse periodic wave solutions may be produced by appropriately selecting these arbitrary functions as the Jacobi elliptic functions. The interaction properties of the periodic waves are investigated numerically and found to be nonelastic. The long wave limit yields some new types of solitary wave solutions. Especially the dromion and the solitoff solutions obtained in this paper possess new types of solution structures which are quite different from the basic dromion and solitoff ones reported previously in the literature.  相似文献   

16.
A review of different cosmological models in diverse dimensions leading to a relatively small time variation in the effective gravitational constant G is presented. Among them: the 4-dimensional (4-D) general scalar-tensor model, the multidimensional vacuum model with two curved Einstein spaces, the multidimensional model with the multicomponent anisotropic “perfect fluid”, the S-brane model with scalar fields and two form fields, etc. It is shown that there exist different possible ways of explaining relatively small time variations of the effective gravitational constant G compatible with present cosmological data (e.g. acceleration): 4-dimensional scalar-tensor theories or multidimensional cosmological models with different matter sources. The experimental bounds on Ġ may be satisfied either in some restricted interval or for all allowed values of the synchronous time variable.   相似文献   

17.
Oscillating Solitons for (2+1)-Dimensional Nonlinear Models   总被引:1,自引:0,他引:1  
Using extended homogeneous balance method and variable separation hypothesis,we found new variableseparation solutions with three arbitrary functions of the (2 1)-dimensional dispersive long-wave equations.Based on derived solutions,we revealed abundant oscillating solitons such as dromion,multi-dromion,solitoff,solitary waves,and so on,by selecting appropriate functions.  相似文献   

18.
A variable separation approach is proposed and successfully extended to the (1 1)-dimensional physics models. The new exact solution of (1 1)-dimensional nonlinear models related to Schr6dinger equation by the entrance of three arbitrary functions is obtained. Some special types of soliton wave solutions such as multi-soliton wave solution,non-stable soliton solution, oscillating soliton solution, and periodic soliton solutions are discussed by selecting the arbitrary functions appropriately.  相似文献   

19.
This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshif~ for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models.  相似文献   

20.
In this paper,the (2+1)-dimensional generalization of shallow water wave equation,which may be used to describe the propagation of ocean waves,is analytically investigated.With the aid of symbolic computation,we prove that the (2+1)-dimensional generalization of shallow water wave equation possesses the Painlev property under a certain condition,and its Lax pair is constructed by applying the singular manifold method.Based on the obtained Lax representation,the Darboux transformation (DT) is constructed.The first iterated solution,second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT.Relevant properties are graphically illustrated,which might be helpful to understanding the propagation processes for ocean waves in shallow water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号