首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin polarization effect for Mn2 molecule   总被引:2,自引:0,他引:2       下载免费PDF全文
阎世英  徐国亮 《中国物理》2007,16(3):686-691
The density functional theory method (DFT) (b3p86) of Gaussian 03 has been used to optimize the structure of the Mn2 molecule. The result shows that the ground state of the Mn2 molecule is an 11-multiple state, indicating a spin polarization effect in the Mn2 molecule, a transition metal element molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Mn2 molecule being of an 11-multiple state is the indicative of spin polarization effect of the Mn2 molecule among those in the transition metal elements: that is, there are 10 parallel spin electrons in a Mn2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacious orbitals so that the energy of the Mn2 molecule is minimized. It can be concluded that the effect of parallel spin in the Mn2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and other states of the Mn2 molecule are derived. The dissociation energy De for the ground state of the Mn2 molecule is 1.4477 eV, equilibrium bond length Re is 0.2506 nm, vibration frequency ωe is 211.51 cm^-1. Its force constants f2, f3, and f4 are 0.7240 aJ·nm-2, -3.35574 aJ·nm^-3, 11.4813 aJ·nm^-4 respectively. The other spectroscopic data for the ground state of the Mn2 molecule ωeχe, Be, αe are 1.5301 cm^-1, 0.0978 cm^-1, 7.7825×10^-4 cm^-1 respectively.  相似文献   

2.
阎世英  朱正和 《中国物理 B》2008,17(12):4498-4503
The density functional theory (DFT) method (b3p86) of Gaussian 03 is used to optimize the structure of the Ni2 molecule. The result shows that the ground state for the Ni2 molecule is a 5-multiple state, symbolizing a spin polarization effect existing in the Ni2 molecule, a transition metal molecule, but no spin pollution is found because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Ni2 molecule, which is a 5-multiple state, is indicative of spin polarization effect of the Ni2 molecule, that is, there exist 4 parallel spin electrons in Ni2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Ni2 molecule is minimized. It can be concluded that the effect of parallel spin in the Ni2 molecule is larger than that of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters of the ground state and other states of the Ni2 molecule are derived. The dissociation energy De for the ground state of the Ni2 molecule is 1.835 eV, equilibrium bond length Re is 0.2243 nm, vibration frequency we is 262.35 cm^-1. Its force constants f2, f3 and f4 are 1.1901 aJ.nm^-2, -5.8723 aJ.nm^-3, and 21.2505 aJ.nm^-4 respectively. The other spectroscopic data for the ground state of the Ni2 molecule ωeχe, Be and αe are 1.6315cm 2, 0.1141 cm^-1, and 8.0145× 10^-4 cm^-1 respectively.  相似文献   

3.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

4.
BH2和AlH2分子的结构及其解析势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
运用二次组态相关(QCISD)方法,分别选用6-311++G(3df,3pd)和D95(3df,3pd)基组,对BH2和AlH2分子的结构进行了优化计算,得到BH2分子的稳态结构为C2v构型,电子态为2A1、平衡核间距RBH=0.1187nm、键角∠HBH=128.791°、离解能De=3.65eV、基态振动频率ν1(a1)=1020.103cm-12(a1)=2598.144cm-13(b2)=2759.304cm-1.AlH2分子的稳态结构也为C2v构型,电子态为2A1、平衡核间距RAlH=0.1592nm、键角∠HAlH=118.095°、离解能De=2.27eV、基态振动频率ν1(a1)=780.81cm-12(a1)=1880.81cm-1,ν3(b2)=1910.46cm-1.采用多体项展式理论推导了基态BH2和AlH2分子的解析势能函数,其等值势能图准确再现了BH2和AlH2分子的结构特征及其势阱深度与位置.分析讨论势能面的静态特征时得到BH+H→BH2反应中存在鞍点,活化能为150.204kJ/mol;AlH+H→AlH2反应中也存在鞍点,活化能为54.8064kJ/mol. 关键词: 2')" href="#">BH2 2')" href="#">AlH2 Murrell-Sorbie函数 多体项展式理论 解析势能函数  相似文献   

5.
黄萍  朱正和 《物理学报》2006,55(12):6302-6307
用原子分子反应静力学原理推导出CrHn(n=0,+1,+2)的电子状态及其离解极限. 对H原子采用6-311++G**基组,对Cr原子采用SVP(split valence polarization)全电子基组,用B3PW91方法计算了它们的平衡几何、电子状态,在此基础上分别计算CrH,CrH+的Murrell-Sorbie解析势能函数和CrH2+的解析势能函数及其对应的力常数、光谱参数,理论计算值与实验值和文献计算值符合较好. 从离解极限和通道解释了不同的势能函数形状. 计算表明:CrH+的势能曲线均具有对应于稳定平衡结构的极小点,说明CrH+可稳定存在. 而CrH2+离子的势能曲线对应于不稳定的排斥态,说明CrH2+是不稳定的. 关键词n(n=0')" href="#">CrHn(n=0 +2) 势能函数 光谱参数 稳定性  相似文献   

6.
阎世英  朱正和 《中国物理》2004,13(12):2053-2057
Density functional method (DFT) (B3p86) of Gaussian98 has been used to optimize the structure of the Tc_2 molecule. The result shows that the ground state for Tc_2 molecule is an 11-multiple state and its electronic configuration is {}^{11}Σ_g^-, which shows the spin polarization effect of Tc_2 molecule of a transition metal element for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher energy states. So, that the ground state for Tc_2 molecule is an 11-multiple state is indicative of the spin polarization effect of Tc_2 molecule of a transition metal element: that is, there exist 10 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Tc_2 molecule is minimized. It can be concluded that the effect of parallel spin of the Tc_2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state {}^{11}Σ_g^- and other states of Tc_2 molecule are derived. Dissociation energy D_e for the ground state of T_{c2} molecule is 2.266eV, equilibrium bond length R_e is 0.2841nm, vibration frequency ω_e is 178.52cm^{-1}. Its force constants f_2, f_3, and f_4 are 0.9200aJ·nm^{-2}, --3.5700aJ·nm^{-3}, 11.2748aJ·nm^{-4} respectively. The other spectroscopic data for the ground state of Tc_2 molecule ω_eχ_e, B_e, α_e are 0.5523cm^{-1}, 0.0426cm^{-1}, 1.6331×10^{-4}cm^{-1} respectively.  相似文献   

7.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

8.
Pu3体系的结构与势能函数   总被引:7,自引:0,他引:7       下载免费PDF全文
用相对论有效原子实势(RECP)和密度泛函(B3LYP)方法对Pun(n=2,3)体系的结构进行了优化,得到了Pu2和Pu3分子的几何构型分别为D∞h,D3h,其基态分别为13和19重态.在B3LYP/RECP水平上得到Pu2分子的光谱常数ωe=52.3845cm-1e χe=0.02 关键词: 2')" href="#">Pu2 3')" href="#">Pu3 分析势能函数  相似文献   

9.
阎世英  鲍文胜 《中国物理》2007,16(12):3675-3680
The density functional theory (DFT)(b3p86) of Gaussian 03 has been used to optimize the structure of the Co$_{2}$ molecule, a transition metal element molecule. The result shows that the ground state for the Co$_{2}$ molecule is a 7-multiple state, indicating a spin polarization effect in the Co$_{2}$ molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state is not mingled with wavefunctions of higher-energy states. So for the ground state of Co$_{2}$ molecule to be a 7-multiple state is the indicative of spin polarization effect of the Co$_{2}$ molecule, that is, there exist 6 parallel spin electrons in a Co$_{2}$ molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacial orbitals so that the energy of the Co$_{2}$ molecule is minimized. It can be concluded that the effect of parallel spin in the Co$_{2}$ molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state and the other states of the Co$_{2}$ molecule are derived. The dissociation energy $De$ for the ground state of Co$_{2}$ molecule is 4.0489eV, equilibrium bond length $R_{\rm e}$ is 0.2061~nm, and vibration frequency $\omega _\e $ is 378.13~cm$^{ - 1}$. Its diatomic molecule force constants $f_2$, $f_3$, and $f_4$ are 2.4824~aJ$\cdot$nm$^{ - 2}$, -7.3451~aJ$\cdot$nm$^{ - 3}$, and 11.2222~aJ$\cdot$nm$^{ - 4 }$respectively(1~aJ=$10^{-18}$~J). The other spectroscopic data for the ground state of Co$_{2}$ molecule $\omega_{\e}\chi _{\e}$, $B_{\e}$, and $\alpha_{\e}$ are 0.7202~cm$^{-1}$, 0.1347~cm$^{-1 }$, and 2.9120$\times $ 10$^{-1}$~cm$^{-1}$ respectively. And $\omega_{\e}\chi _{\e}$ is the non-syntonic part of frequency, $B_{\e}$ is the rotational constant, $\alpha_{\e}$ is revised constant of rotational constant for non-rigid part of Co$_2$ molecule.  相似文献   

10.
Zeng Hui  Zhao Jun 《中国物理 B》2012,21(7):78202-078202
In this paper, the energy, the equilibrium geometry, and the harmonic frequency of the ground electronic state of PO2 are computed using B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O=0.1465 nm, d=19.218 eV. The bent vibrational frequency ν1=386 cm-1, the symmetric stretching frequency ν2=1095 cm-1, and the asymmetric stretching frequency ν3=1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, the reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is first derived by using the many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

11.
Infrared spectra of PD3 have been measured in the 20-320 cm−1 range and in the region of the ν24 and ν13 fundamental bands near 750 and 1690 cm−1, respectively, with a resolution of ca. 0.0025 cm−1. Furthermore, submillimeter-wave spectra covering the J=4-3, 13-12, and 14-13 clusters in the vibrational ground state were recorded. The observed ΔJ=+1 rotational lines were augmented by about 5500 ground state combination differences formed from transitions belonging to the fundamental bands. Of these, 1300 involved perturbation-allowed lines with ΔK≠0. These data and observations taken from the literature were appropriately weighted and fitted to 14 ground state molecular constants. The A and B reductions of the rotational Hamiltonian were found to be equivalent. Improved effective ground state and equilibrium structures were determined for both PH3 and PD3; the equilibrium structures, re (PH)=141.1607(83) pm and αe (HPH)=93.4184(95)° and re (PD)=141.1785(57) pm and αe (DPD)=93.4252(68)°, are in good agreement.  相似文献   

12.
谢安东 《中国物理》2006,15(2):324-328
Density functional theory (DFT) (B3p86) has been used to optimize the structure of the molecule Ta2. The result shows that the ground state of molecule Ta2 is a 7-multiple state and its electronic configuration is ^7∑u^+, which shows the spin polarization effect for molecule Ta2 of transition metal elements for the first time. Meanwhile, spin pollution has not been found because the wavefunction of the ground state does not mix with those of higher states. So, the fact that the ground state of molecule Ta2 is a 7-multiple state indicates a spin polarization effect of molecule Ta2 of the transition metal elements, i.e. there exist 6 parallel spin electrons and the non-conjugated electrons are greatest in number. These electrons occupy different space orbitals so that the energy of molecule Ta2 is minimized. It can be concluded that the effect of parallel spin of the molecule Ta2 is larger than the effect of the conjugated molecule, which is obviously related to the effect of d-electron delocalization. In addition, the Murrell-Sorbie potential functions with parameters for the ground state ^7∑u^+ and other states of the molecule Ta2 are derived. The dissociation energy De, equilibrium bond length Re and vibration frequency we for the ground state of molecule Ta2 are 4.5513eV, 0.2433nm and 173.06cm^-1, respectively. Its force constants f2, f3 and f4 are 1.5965×10^2aJ.nm^-2, -6.4722×10^3aJ·nm^-3 and 29.4851×10^4aJ·nm^-4, respectively. Other spectroscopic data we xe, Be and αe for the ground state of Ta2 are 0.2078cm^-1, 0.0315 cm^-1 and 0.7858×10^-4 cm^-1, respectively.  相似文献   

13.
The emission spectra of TaN have been investigated in the region 3000-35 000 cm−1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ+ state, with equilibrium constants of Be=0.457 852 1(48) cm−1, αe=0.002 235 9(67) cm−1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ1 spin component at 2827 cm−1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.  相似文献   

14.
刘冬梅  张树东 《物理学报》2012,61(3):33101-033101
运用含Davidson修正的多参考组态相互作用方法,在aug-cc-pVTZ基组水平上,对BeCl分子基态和相同多重度的几个低电子激发态进行了势能扫描计算.通过群论原理确定各电子态对称性及离解极限.将其中基态(X2Σ+)和第一激发态(A2Π})对应的势能曲线拟合到Murrell-Sorbie解析势能函数形式,得到基态(X2Σ+)的离解能及主要光谱常数(括号中为文献[6]提供的实验值)为De=3.74eV,Re=0.18173nm(0.17970),we=857.4cm1(847.2),wexe=5.03cm-1(5.14),Be=0.7103cm-1(0.7285),αe=0.0059cm-1(0.0069),第一激发态(A2Π)的De=3.02eV,Re=0.18369nm(0.18211),we=832.7cm-1(822.1),wexe=5.93cm-1(5.24),Be=0.6953cm-1(0.7094),αe=0.0065cm-1(0.0068),计算结果与实验值符合得较好.另外,通过Level程序求解双原子径向核运动的Schrödinger方程得到J=0时BeCl分子这两个电子态的全部振动能级.  相似文献   

15.
利用QCISD(T),SAC-CI方法和cc-pVQZ,aug-cc-pVTZ,6-311++G及6-311++G(3df,2pd)基组,对MgH分子的基态X2Σ+,第一简并激发态A2Π和第二激发态B2Σ+的结构进行优化计算.通过对4个基组计算结果进行比较,得出6-311++G(3df,2pd)基组为最优基组.使用 关键词: 分子结构与势能函数 激发态 Murrell-Sorbie函数 C6函数')" href="#">Murrell-Sorbie+C6函数  相似文献   

16.
赵俊  程新路  杨向东  朱正和 《物理学报》2009,58(8):5280-5284
运用Gaussian03软件包,采用密度泛函理论中的B3P86 方法,结合6-311++G**(3df,3pd) 基组对基态SiF2分子的平衡电子结构和谐振频率进行了优化计算,得到了其稳定结构为C2v构型.SiF2基态电子态为X1A1,平衡核间距RSi—F=0.1061 nm,键角αF—Si—F=100.6762°,离解能De=13.8 eV.应用多体项展式理论推导了基态SiF2分子的解析势能函数,其等值势能图准确地再现了SiF2分子的平衡构型特征和能量变化. 关键词: 2')" href="#">SiF2 Murrell-Sorbie函数 多体项展式理论  相似文献   

17.
刘大勇  陈东猛  邹良剑 《中国物理 B》2009,18(10):4497-4505
Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jz/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.  相似文献   

18.
在Pu的相对论有效原子实势近似和O原子6-311G*全电子基函数下,用quadratic configuration interaction of singlely and doublely substitution(QCISD)方法计算了PuO分子基态X5Σ-的Murrell-Sorbie解析势能函数和热力学函数,得到Re,De,Bee关键词:  相似文献   

19.
We determined and tried to understand the spectroscopic and structural properties of small LiAr and LiAr2 molecules within a simple model considering LiAr as a result of interaction between a valence electron and a LiAr+ molecular ion. Potential energy curves, spectroscopic constants, and vibrational levels corresponding to the Li(2s, 2p, 3s, and 3p)+Ar dissociation are reported for the LiAr molecule. The depth of the potential well for the X 2Σ+ ground state is found to be 50 cm−1 (the corresponding experimental value is (42.5±1.2) cm1 [1]). R e is determined to be 9.36 a.u. (the experimental value is 9.24 a.u.). For the first excited state A, R e = 4.97 a.u. and D e = 993cm −1 (the corresponding experimental values are 4.68 a.u. and (925−40) cm−1, respectively [1]). The spacing between the vibrational levels for the ground and first excited states is in very good agreement with the experiment. For the ground state, the difference between our results and the data of the most recent experiment is about 1 cm−1. The model has been extended to study the LiAr2 molecule in two forms (linear and triangular). We have determined the potential energy surfaces of the states dissociating to Li(2s, 2p)+Ar2 and thus found the triangular form to be more stable as compared to the linear one. We have also calculated the transition energy between the ground state and first excited states of this molecule. The emission spectrum of the Li(2s)+Ar2→Li(2p)+Ar2 transition in both forms redshifts as compared to the Li(2s)→Li(2p) atomic transition.  相似文献   

20.
Electronic structure and spectroscopic properties B e, ωe, ωe x e, αe, T e of ground state and the low-lying excited states of HF+ and HF- molecular ions were investigated within scalar relativistic multireference configuration interaction with single and double excitations framework using the GAMESS-US program package. All potential energy curves (PECs) were calculated using the relativistic complete active space self-consistent field/spin-orbit multi-configuration quasi-degenerate perturbation theory (CASSCF/SO-MCQDPT). The curves are all fitted to the analytical potential energy function (APEF), from which accurate spectroscopic constants are derived. The spin-orbit splitting was also been studied, the split value of X2P^{2}{\rm \Pi} state of HF+ is determined to be 288.38 cm-1. The calculated properties are in good agreement with the available experimental value. Spectroscopic constants of the ground states of HF- that have never been observed in experiment are obtained. These curves provide an interpretation of the known experimental observations on this system and suggest a number of further experiments which possible provide a critical test of this data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号