首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We here investigate the sensitivity enhancement of central-transition NMR spectra of quadrupolar nuclei with spin-7/2 in the solid state, generated by fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM). Considerable intensity is gained for the central-transition resonance of single-quantum spectra by means of spin population transfer from the satellite transitions, both under static and magic-angle-spinning (MAS) conditions. It is also shown that incorporation of a SW-FAM train into the excitation part of a 7QMAS sequence improves the efficiency of 7Q coherence generation, resulting in improved signal-to-noise ratio. The application of FAM-type pulse trains may thus facilitate faster spectra acquisition of spin-7/2 systems.  相似文献   

2.
It is demonstrated that the use of fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM) leads to considerable sensitivity enhancement for the central-transition signal (via spin population transfer from the satellite transitions) for solid-state NMR spectra of titanium, 47Ti (I = [Formula: see text] and 49Ti (I = [Formula: see text]. For the magic-angle spinning spectra of TiO2 and BaTiO3, the intensity of the 49Ti central-transition line was more than doubled compared to simple Hahn-echo acquisition, while for the static case, enhancement factors of 1.6 (TiO2) and 1.8 (BaTiO3) were obtained. No lineshape distortions are observed in either MAS or static spectra of both compounds. Employment of the FAM and SW-FAM sequences should be useful in the routine acquisition of 47,49Ti spectra, as the NMR signal can be detected much faster.  相似文献   

3.
Sensitivity enhancement of solid-state NMR spectrum of half-integer spin quadrupolar nuclei under both magic-angle spinning (MAS) and static cases has been demonstrated by transferring polarisation associated with satellite transitions to the central m=-1/2-->1/2 transition with suitably modulated radio-frequency pulse schemes. It has been shown that after the application of such enhancement schemes, there still remains polarisation in the satellite transitions that can be transferred to the central transition. This polarisation is available without having to wait for the spin system to return to thermal equilibrium. We demonstrate here the additional sensitivity enhancement obtained by making use of this remaining polarisation with fast amplitude-modulated (FAM) pulse schemes under both MAS and static conditions on a spin-3/2 and a spin-5/2 system. Considerable signal enhancement is obtained with the application of the multiple FAM sequence, denoted as m-FAM. We also report here some of the salient features of these multiple FAM sequences with respect to the nutation frequency of the pulses and the spinning frequency.  相似文献   

4.
俞珺 《波谱学杂志》1986,3(1):71-79
本文介绍了利用自旋回波和J调制的办法识别化合物中不同类型碳原子的APT技术。比较了极化转移增强核灵敏度的INEPT和DEPT技木,并给出利用INEPT改善15N核磁共振谱信噪比的实例。讨论了这几种方法的优缺点。  相似文献   

5.
A technique for obtaining derivative spectra of Raman vibrations of a surface monolayer is demonstrated. Nearly shot noise limited performance is maintained by low frequency wavelength modulation of a high frequency amplitude-modulated picosecond pulse train. We demonstrate the technique by recovering a surface enhanced spectrum of carbonate on a silver surface obtained by integration of a measured derivative spectrum.  相似文献   

6.
The very broad resonances of quadrupolar (spin I > 1/2) nuclei are resolved by magic angle spinning (MAS) into a large number of spinning sidebands, each of which often remains anisotropically broadened. The quadrupolar interaction can be removed to a first-order approximation if the MAS NMR spectrum is acquired in a rotor-synchronized fashion, aliasing the spinning sidebands onto a centreband and thereby increasing the signal-to-noise ratio in the resulting, possibly second-order broadened, spectrum. We discuss the practical aspects of this rotor-synchronization in the direct (t(2)) time domain, demonstrating that the audiofrequency filters in the receiver section of the spectrometer have a significant impact on the precise timings needed in the experiment. We also introduce a novel double-quantum filtered rotor-synchronized experiment for half-integer spin quadrupolar (spin I = 3/2, 5/2, etc.) nuclei that makes use of central-transition-selective inversion pulses to both excite and reconvert double-quantum coherences and yields a simplified spectrum containing only the ST(1) (m(I) = +/-1/2 <--> +/-3/2) satellite-transition lineshapes. For spin I = 5/2 nuclei, such as (17)O and (27)Al, this spectrum may exhibit a significant resolution increase over the conventional central-transition spectrum.  相似文献   

7.
We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin-72 systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90 degrees pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc2(SO4)3 x 5H2O and the 139La NMR of LaAlO3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.  相似文献   

8.
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their applicability. This is demonstrated by (27)Al 3QMAS experiments on 9Al(2)O(3). 2B(2)O(3) and the mineral andalusite. In the latter compound, Al experiences a quadrupolar-coupling constant of 15.3 MHz in one of the sites. Finally a 5QMAS spectrum on 9Al(2)O(3). 2B(2)O(3) demonstrates the sensitivity enhancement of this experiment using a double frequency sweep.  相似文献   

9.
10.
This paper centers on a theoretical study of amplitude-modulated heteronuclear decoupling in solid-state NMR under magic-angle spinning (MAS). A spin system with a single isolated rare spin coupled to a large number of abundant spins is used in the analysis. The phase-alternating decoupling scheme (XiX decoupling) is analyzed using bimodal Floquet theory and the operator-based perturbation method developed by van Vleck. An effective Hamiltonian correct to second order is calculated for the spin system under XiX decoupling. The results of these calculations indicate that under XiX decoupling the main contribution to the residual line width comes from a cross-term between the heteronuclear and the homonuclear dipolar couplings. This is in contrast to continuous-wave decoupling, where the residual line width is dominated by the cross-term between the heteronuclear dipolar coupling and the chemical-shielding tensor of the irradiated spin. For high-power decoupling the method results in very good decoupling provided that certain unfavorable recoupling conditions, imposed by specific ratios of the amplitude modulation frequency and the MAS frequency, are avoided. For low-power decoupling, the method leads to acceptable decoupling when the pulse length corresponds to an integer multiple of a 2pi rotation and the rf-field amplitude is less than a quarter of the MAS frequency. The performance of the XiX scheme is analyzed over a range of values of the rf power, and numerical results that agree well with the most recent experimental observations are presented.  相似文献   

11.
We discuss orientational modulation (OM) of the weak nuclear quadrupole interaction energy by means of adiabatic rotation of the crystal about an axis fixed in space with a constant external static magnetic field. Subsequent standard synchronous detection of the NMR signals at twice the rotational frequency produces unusual orientationally modulated NMR spectra (unlike the ordinary spectra) reflecting only the characteristic features of the anisotropic nuclear quadrupole interaction. We substantiate, present, and analyze the basic relations describing the structure of the observed OM NMR signals, with arbitrary symmetry (and in a special case, axial symmetry) of the EFG tensor. An important feature of the orientational modulation method under discussion is the possibility (with appropriate choice of the phase of the reference signal) of complete suppression of all the fine structure components belonging to a certain system of structurally or magnetically equivalent nuclei in the complex superposition NMR spectra. The basic theoretical results are confirmed experimentally.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 24–29.  相似文献   

12.
The spin dynamics of Hartmann-Hahn cross-polarization from I = 1/2 to quadrupolar S = 3/2 nuclei is investigated. A density-matrix model applicable to cases where the quadrupole frequency vQ is much larger than the rf amplitude v1S of the S spins, predicts the time development of the spin state of an isolated I, S spin pair in static situations and in three distinct cases of magic-angle-spinning speed vR. These cases are characterized as slow, intermediate, and fast, depending on the magnitude of the parameter alpha = v1S2/vQvR relative to the intermediate value of 0.4. The model predictions are supported by numerical simulations. The polarization transfer from I to S is efficient in the limits of slow and fast sample spinning. When alpha < 1, the Hartmann-Hahn condition is shifted over once or twice vR. When the spinning rate is intermediate, poor spin-locking of the quadrupolar spins prevents the accumulation of a cross-polarization signal and, in addition, depletes the spin-locked I magnetization. Experimental CP/MAS data obtained in NaOH show that the concepts developed for isolated spin pairs are also applicable to cross-polarization in a strongly coupled multi-spin system.  相似文献   

13.
Spurious signals such as the piezoelectric signal from a ferroelectric crystal or the ringing signal from the NMR probe head tuned for low gyromagnetic ratio nuclei are often observed in pulsed NMR. Both signals are cancelled using the Hahn echo sequence with appropriate phase cyclings. The present paper applies a composite-pulse sequence to cancel the ringing signal. The main advantage of this sequence over the Hahn echo sequence is in the simplicity of optimizing the line intensity: the optimization of only one pulse duration for this sequence but of two pulse durations and the interpulse delay for the Hahn echo sequence. We are interested in half-integer quadrupole spins (I = 3/2, 5/2, 7/2, and 9/2), which means that we must consider the first-order quadrupole interaction during the pulses. For simplicity, we deal mainly with spin I = 3/2 nuclei. Since the central-line intensity depends on the ratio of the quadrupole coupling constant (QCC) to the amplitude of the RF pulse, we can determine the QCC from a featureless lineshape by fitting the variation of the experimental central-line intensity for increasing pulse duration with theoretical results. Contrary to the one-pulse sequence where the central-line intensity is proportional to the pulse duration if the latter is short, there is no such condition with the composite-pulse sequence. In other words, this sequence does not allow us to quantify the relative spin populations in powders. The size of the sample must be much smaller than that of the RF coil in order for the RF magnetic field to become homogeneous for the sample. We used (87)Rb (I = 3/2) in an aqueous solution of RbCl and in RbNb2O5F powder, (131)Xe (I = 3/2) of xenon gas physisorbed in Na-Y zeolite, and (23)Na (I = 3/2) in two well-known powders (NaNO3 and NaNO2) to support our theoretical result.  相似文献   

14.
介绍了一种具有快速幅度、相位和频率调制功能的核磁共振射频发射机. 数字中频子系统中采用了两个级联的数控振荡器,前一级数控振荡器在FPGA内实现,用于产生基带调制信号;后一级则采用具有正交调制功能的DDS芯片,由它来完成基带信号的采样率转换、中频产生、调制和输出. 射频脉冲的相位和频率偏置的设置直接由级联NCO实现,而幅度设置则由步进衰减器和中频幅度调制共同实现. 该发射机的基本性能和功能满足常规1D/2D NMR实验需求.  相似文献   

15.
We achieve a significant signal enhancement for the triple-quantum magic-angle spinning NMR of a spin-3/2 system, by using an amplitude-modulated radiofrequency field, followed by a selective 90 degrees pulse and a phase-shifted strong rf field, for the triple-quantum excitation, and an amplitude-modulated radiofrequency field for the conversion of triple-quantum coherence to observable single-quantum coherence. The experiment is demonstrated on the (87)Rb NMR of polycrystalline rubidium nitrate.  相似文献   

16.
We present a modification of a field-cycling method which uses the NMR signal of the central transition at high field to indirectly detect zero-field quadrupole transitions. The quadrupole transitions at zero-field are detected as changes in the overall intensity of the central transition signal after the field cycle, and the method is relatively immune to lineshape distortions of the central transition caused by receiver dead time, frequency response of the probe, longer pulse lengths, etc. Cross-polarization with protons is used to enhance the central-transition signal and to increase the recycling rate of the experiment. The technique is especially useful when mixtures of several species are present. In a frozen solution of phenylboronic acid, 11B quadrupole signals of the tetrahedral species at 600 kHz and planar-trigonal species at 1450 kHz are clearly resolved. The field-cycling approach allows high-sensitivity detection of low-frequency quadrupole transitions; the experiment is sensitive enough to study boronic-acid protease inhibitors bound to proteins and may possibly be extended to lower sensitivity nuclei. The experiments are performed using a low-temperature field-cycling apparatus, operated at 10-30 K, capable of pneumatically moving the sample from the high field of a commercial 500 MHz magnet to the area above the top of the magnet where the low field is controlled by a pair of Helmholz coils.  相似文献   

17.
We report here an efficient multiple-quantum magic-angle spinning (MQMAS) pulse sequence involving fast amplitude-modulated (FAM) radio-frequency pulses for excitation and conversion of five-quantum (5Q) coherences of spin-5/2 nuclei. The use of a FAM-I type pulse train for the conversion of 5Q into 1Q coherences proves to be easier to implement experimentally than the earlier suggested use of a FAM-II type sequence [J. Magn. Reson. 154 (2002) 280], while delivering at least equal signal enhancement. Results of numerical simulations and experimental 27Al 5QMAS spectra of aluminium acetylacetonate for different excitation and conversion schemes are compared to substantiate these claims. We also demonstrate the feasibility of acquiring 5QMAS spectra of spin-5/2 systems using cogwheel phase cycling [J. Magn. Reson. 155 (2002) 300] to select the desired coherence pathways. A cogwheel phase cycle of only 57 steps is shown to be as effective as the minimum conventional nested 77-step phase cycle.  相似文献   

18.
We have performed magic-angle-spinning solid-state NMR experiments in which protons are recoupled to oxygen-17 nuclei by applying a symmetry-based recoupling sequence at the proton Larmor frequency. Two-dimensional quadrupole-dipole correlation spectra are produced, in which the second-order quadrupolar shift of the oxygen-17 central transition is correlated with the recoupled heteronuclear dipole-dipole interaction. These spectra are sensitive to the relative orientation of the electric field gradient at the site of the oxygen-17 nucleus and the O-H internuclear vector. We also demonstrate experiments in which polarization is transferred from protons to oxygen-17, and show that oxygen-17 signals may be selected according to the protonation state of the oxygen site. We discuss the small observed value of the heteronuclear dipolar splitting in the central-transition oxygen-17 spectra.  相似文献   

19.
In order to microscopically investigate the magnetic properties of both paramagnetic and antiferromagnetic phases in Mn3Si (T N?=?23 K), the 55Mn NMR has been carried out at temperatures between 2.2 K and 300 K. The temperature dependences of the spectrum, Knight shift (or resonance frequency shift) and spin-lattice relaxation time T 1 of 55Mn NMR have been measured. In the paramagnetic phase, only one resonance spectrum can be obtained. The observed spectrum is identified to be a signal corresponding to the Mn(II) site. In the antiferromagnetic phase, two different spectra corresponding to the Mn(I) and Mn(II) sites are found at the resonance frequencies of 145 and 6 MHz, respectively, by the zero field NMR at 4.2 K. From these results, the internal magnetic fields on the 55Mn(I) and 55Mn(II) nuclei are found to be 13.6 and 0.6 T, respectively. According to the NMR results, the helical structure in incommensurate Mn spin states is better explained compared with the transverse sinusoidal structure.  相似文献   

20.
The current theory of three-pulse electron double resonance (PELDOR) has been generalized to the case, when paramagnetic particles (spin labels) in pairs or groups have the electron paramagnetic resonance (EPR) spectra, which overlap essentially or coincide. The PELDOR signal modulation induced by the dipole–dipole interaction between paramagnetic spin ½ particles in pairs embedded in disordered systems has been analyzed comprehensively. It has been shown that the PELDOR signal contains additional terms in contrast to the situation considered in the current theory, when the EPR spectra of the spin labels in the pairs do not overlap. In disordered systems, the pairs of spin labels have the characteristic dipolar interaction frequency. According to the current theory for pairs of spin labels, the PELDOR signal reveals the modulation with this characteristic frequency. The additional terms, which are obtained in this work, do not change the modulation frequency of the PELDOR signal for pairs of spin labels. However, these additional terms should be taken into account when analyzing the amplitude of the PELDOR signal and the amplitude of the modulation of the PELDOR signal. The consistent approach to treating the PELDOR data for the groups containing three or more spin labels has been outlined on the basis of the results for pairs of spin labels. It has been also analyzed how the spin flips and molecular motion or molecular isomerization can affect the manifestation of the interaction between the spin labels in PELDOR experiments. PELDOR experiments for the stable biradicals (biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and biradicals II containing 3-imidazoline spin labels) have been performed. The results have been interpreted within the theory developed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号