首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese porphyrin complexes catalyze the hydroxylation of saturated hydrocarbons by potassium hydrogen persulfate (or Oxone) at room temperature. High conversions of hydrocarbons are obtained.  相似文献   

2.
3.
The asymmetric addition of diazoacetophenone to styrene derivatives to give optically active cyclopropyl ketones (ee up to 86%) was carried out by using chiral ruthenium porphyrins as homogeneous catalysts.  相似文献   

4.
A Bacillus megaterium strain was isolated from topsoil by a selective screening procedure with allylbenzene as a xenobiotic substrate. This strain performed the hydroxylation chemoselectively (no arene oxidation and overoxidized products) and enantioselectively (up to 99% ee) in the benzylic and nonbenzylic positions of a variety of unfunctionalized arylalkanes. Salycilate and phenobarbital, which are potent inducers of cytochrome P-450 activity, changed the regioselectivity of the microbial CH insertion, without an effect on the enantioselectivity. The biotransformation conditions were optimized in regard to product yield and enantioselectivity by variation of the oxygen-gas supply and the time of the substrate addition. The different product distributions (alpha- versus beta-hydroxylated product) that are obtained on induction of cytochrome P-450 enzyme activity demonstrate the involvement of two or more hydroxylating enzymes with distinct regioselectivities in this biotransformation. An oxygen-rebound mechanism is assumed for the cytochrome P-450-type monooxygenase activity, in which steric interactions between the substrate and the enzyme determine the preferred face of the hydroxy-group transfer to the radical intermediate.  相似文献   

5.
A new flow injection catalytic method was described for the determination of ruthenium(III) based on its catalytic effect on the oxidation of brilliant cresyl blue (BCB) by periodate in acidic media. The reaction was followed spectrophotometrically by measuring the absorbance of the dye at 635 nm. Under optimum conditions, ruthenium can be determined in the range of 1.0-100.0 ng ml(-1) with a relative standard deviation of 1.1% and with a limit of detection of 0.70 ng ml(-1). The influence of reagent and manifold variables were studied and optimized. The method was tested for the determination of ruthenium(III) in some synthetic mixtures.  相似文献   

6.
Iron(II) porphyrin nitrosyl complexes are obtained in high yields from the reaction of iron(III) porphyrins with the nitroxyl donors sodium trioxodinitrate and toluensulfohydroxamic acid. The reaction was found to proceed both in organic solvents and in aqueous media from iron(III) (meso-tetraphenyl) porphyrinate ([FeIII(TPP)]+) and iron(III) meso-tetrakis (4-sulfonatophenyl) porphyrinate ([FeIII(TPPS)]3-) or iron(III) protoporphyrin IX, respectively. The kinetic rate constant for the reaction of ([FeIII(TPPS)]3-) with sodium trioxodinitrate (kon) was estimated to be 1.00 +/- 0.04 x 107 M-1 s-1. As well as resulting in a versatile method for obtaining ferrous nitrosyl porphyrins, the reaction points at ferric porphyrins as efficient nitroxyl traps and provides a tool to model nitroxyl reactivity toward hemeproteins.  相似文献   

7.
Yu XQ  Huang JS  Zhou XG  Che CM 《Organic letters》2000,2(15):2233-2236
Amidation of a variety of hydrocarbons with PhI=NTs catalyzed by ruthenium and manganese meso-tetrakis(pentafluorophenyl)porphyrins 1 and 2 afforded N-substituted amides in up to 92% yields with good to excellent substrate conversions. By employing catalyst 2, exceptionally high turnovers (up to 2600) were achieved, and the amidations can be effected by directly using PhI(OAc)(2)/NH(2)R as amidating reagents; in the case of R = COCF(3) a direct amination was realized in up to 90% yield.  相似文献   

8.
Abstract

A series of manganese(III) porphyrins with 4-methylimidazole have been prepared. These are high-spin complexes having general formula [MnIII(THMPP)X(4-MeIm)], where THMP?=?5,10,15,20-tetra(4-hydroxy-3-methoxyphenyl)porphine ligand, X?=?Cl?, Br?, NCS?, or N3? and 4-MeIm?=?4-methylimidazole. All the complexes have been characterized by UV-visible, FT-IR, ESI-MS spectra, elemental analyses and magnetic susceptibility measurements. These manganese(III) porphyrins oxidize aromatic alcohols to aldehydes. The oxidation reactions have been carried out at room temperature in the presence of oxidants such as NaIO4, H2O2, and NaOCl. The comparative studies proved that NaIO4 behaves as the most efficient oxidant in these oxidative transformation reactions.  相似文献   

9.
[reaction: see text] The asymmetric addition of diisopropyl diazomethylphosphonate to styrene derivatives was carried out by using chiral ruthenium porphyrins as catalysts. The reaction proceeded under mild conditions and gave trans-cyclopropylphosphonates with good yields and high ee's (up to 92%). A progressive increase for stereochemical effectiveness exists between enantiomeric excess and the number of chiral goups linked to ruthenium porphyrins.  相似文献   

10.
Chiral metalloporphyrins [Mn(Por*)(OH)(MeOH)] (1) and [Ru(Por*)(CO)(EtOH)] (2) catalyze asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons to give moderate enantiomeric excesses. The mass balance in these nitrogen-atom-transfer processes has been examined. With PhI=NTs as the nitrogen source, the aziridination of styrenes, trans-stilbene, 2-vinylnaphthalene, indene, and 2,2-dimethylchromene catalyzed by complex 1 or 2 resulted in up to 99 % substrate conversions and up to 94 % aziridine selectivities, whereas the amidation of ethylbenzenes, indan, tetralin, 1-, and 2-ethylnaphthalene catalyzed by complex 2 led to substrate conversions of up to 32 % and amide selectivities of up to 91 %. Complex 1 or 2 can also catalyze the asymmetric amidation of 4-methoxyethylbenzene, tetralin, and 2-ethylnaphthalene with "PhI(OAc)(2) + NH(2)SO(2)Me", affording the N-substituted methanesulfonamides in up to 56 % ee with substrate conversions of up to 34 % and amide selectivities of up to 92 %. Extension of the "complex 1 + PhI=NTs" or "complex 1 + PhI(OAc)(2) + NH(2)R (R=Ts, Ns)" amidation protocol to a steroid resulted in diastereoselective amidation of cholesteryl acetate at the allylic C-H bonds at C-7 with substrate conversions of up to 49 % and amide selectivities of up to 90 % (alpha:beta ratio: up to 4.2:1). An aziridination- and amidation-active chiral bis(tosylimido)ruthenium(VI) porphyrin, [Ru(Por*)(NTs)(2)] (3), and a ruthenium porphyrin aziridine adduct, [Ru(Por*)(CO)(TsAz)] (4, TsAz=N-tosyl-2- (4-chlorophenyl)aziridine), have been isolated from the reaction of 2 with PhI=NTs and N-tosyl-2-(4-chlorophenyl)aziridine, respectively. The imidoruthenium porphyrin 3 could be an active species in the aziridination or amidation catalyzed by complex 2 described above. The second-order rate constants for the reactions of 3 with styrenes, 2-vinylnaphthalene, indene, ethylbenzenes, and 2-ethylnaphthalene range from 3.7-42.5x10(-3) dm(3) mol(-1) s(-1). An X-ray structure determination of complex 4 reveals an O- rather than N-coordination of the aziridine axial ligand. The fact that the N-tosylaziridine in 4 does not adopt an N-coordination mode disfavors a concerted pathway in the aziridination by a tosylimido ruthenium porphyrin active species.  相似文献   

11.
The current applications of ruthenium porphyrins in stoichiometric and catalytic asymmetric reactions are reported. Chiral recognition of racemic phosphines, isocyanides and amino esters has been studied by 1H-NMR. Experimental investigations of the oxidation mechanism of racemic phosphines and amino esters are described. The stereochemistry of catalytic asymmetric oxidation and cyclopropanation of olefins with optically active ruthenium porphyrins are also discussed.  相似文献   

12.
Highly sensitive catalytic spectrophotometric determination of ruthenium   总被引:1,自引:0,他引:1  
A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of l-phenylalanine (l-Pheala) by KMnO(4) in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (DeltaA(t)) versus added Ru(III) amounts in the range of 0.101-2.526ngml(-1) is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5min is 0.08ngml(-1), and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.  相似文献   

13.
14.
Ci YX  Wang F 《Talanta》1990,37(12):1133-1136
The relative ability of peroxidase-like metallotetrakis(N-methylpyridiniumyl)porphyrins [Me-TMPyP, Me = Mn(III), Fe(III), Co(III), Ni(II), Cu(II), and Zn(II)] to catalyse the hydrogen peroxide oxidation of homovanillic acid to a fluorescent dimer has been studied. The complexes of Mn, Fe and Co are effective catalysts in the reaction, but the complexes of Ni, Cu and Zn are not. The catalytic behaviour of Mn-TMPyP, Fe-TMPyP and Co-TMPyP has been compared with that of HRP in both enzymatic and kinetic analysis. The sequence of peroxidase-like catalytic activity is Mn-TMPyP> Co-TMPyP> Fe-TMPyP. The catalytic activity of Mn-TMPyP is 84% of that of HRP. These Me-TMPyP (Me = Mn, Fe, and Co) compounds are good substitutes for HRP in enzymatic analysis. Traces of hydrogen peroxide and glucose can be determined with the Me-TMPyP systems.  相似文献   

15.
氨功能化介孔MCM-41固载锰卟啉作为萘羟基化多相催化剂   总被引:1,自引:0,他引:1  
将不同含量的四(五氟苯基)卟啉锰固载于表面氨基功能化的MCM-41介孔分子筛,所得样品通过粉末X射线衍射、氮气吸附脱附、傅里叶变换红外光谱、X射线光电子能谱、扫描电子显微镜、漫反射紫外-可见光谱、热重和差示扫描量热、电感耦合等离子体进行了表征.结果表明,四(五氟苯基)卟啉锰通过Mn与氨基的轴向配位固载于MCM-41.所制备的样品作为多相催化剂在以间氯过氧苯甲酸为氧化剂选择氧化萘反应中表现出良好的催化性能,且多次使用后没有明显的活性损失.  相似文献   

16.
Bis(N-ethylideneethanamine)ruthenium(ii) porphyrins, [Ru11(Por)(N(Et)=CHMe)2] (Por=TTP, 4-Cl-TPP), were prepared by the reaction of dioxoruthenium(VI) porphyrins with triethylamine in approximately 85% yields. The reaction between dioxoruthenium(VI) porphyrins and benzophenone imine afforded bis(diphenylmethyleneamido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(N=CPh2)2] (Por=TTP, 3,4,5-MeO-TPP), in approximately 65% yields. These new classes of metalloporphyrins were characterized by 1H NMR, UV/Vis, and IR spectroscopy as well as by mass spectrometry and elemental analysis. The X-ray crystallographic structures of [Ru(II)(TTP)(N(Et)=CHMe)2] and [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] revealed an axial Ru-N bond length of 2.115(6) A for the imine complex and 1.896(8) A for the methyleneamido complex. Each of the N=CPh2 axial groups in [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] adopts a linear coordination mode with a corresponding Ru-N-C angle of 175.9(9)degrees. Spectral and structural studies revealed essentially single bonding character for the bis(imine) complexes but a multiple bonding character for the bis(methyleneamido) complexes with respect to their axial Ru-N bonds.  相似文献   

17.
MINDO/3 calculations have been made on the potential-energy surfaces for the attachment of OH. radicals to benzene (1) and naphthalene (2) in the vapor state. The activation energies of these reactions are calculated as 88 and 58 kJ/mole. while the enthalpies at 298K are calculated as –211 and –199 kJ/mol. The transition states in (1) and (2) lie closer to the reagents than the products on the reaction coordinate, while (1) has an earlier transition state than does (2). The transition states in these reactions have high dipole moments: 3.1 and 3.6 D, respectively, which are due to charge transfer from the hydrocarbons to the OH.. Quantum-chemical calculations and kinetic data on the reactions of aromatic hydrocarbons with OH. in aqueous solution indicate that the mechanism is probably not one involving electron transfer and a rate-limiting stage in the attachment. These processes are of high performance because the radicals are of high stability, while polar effects determine the selectivity.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 22, No. 1, pp. 20–26, January–February, 1986.  相似文献   

18.
《Tetrahedron》1988,44(4):1227-1234
Hydroxylation of C-alkylated phenols has been achieved by employing cerium (IV) ammonium nitrate and hydrogen peroxide in acetic acid medium. The yield of hydroxylation products increases markedly when 3 × 10-3 M solution of sodium dodecyl sulphate is added to the oxidation system. The plausible mechanism of the reaction seems to involve free radical intermediates and is influenced by hydrophobic environment. The findings are also of significance from the view point of oxidative coupling of phenols.  相似文献   

19.
It is shown that unlike thermal pyrolysis, the rate of catalytic pyrolysis is greatly affected by dilution of hydrocarbons with inert gases. The nature of this effect has been analyzed.
, . .
  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(21):3520-3526
The [RuII(D4-Por1)(CO)(MeOH)] (D4-H2Por1 = tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrin) complex 1 is an effective catalyst for asymmetric hydroxylation of aromatic hydrocarbons with 2,6-dichloropyridine N-oxide (Cl2pyNO) as terminal oxidant. Up to 76% ee was achieved for the catalytic hydroxylation of 4-ethyltoluene, 1,1-diethylindan and benzylcyclopropane. Both electron-donating and -withdrawing substituents were found to accelerate the catalytic oxidation reaction, and a large primary H/D kinetic isotope effect (kH/kD = 11 at 298 K) was observed for the catalytic ethylbenzene-d10 oxidation. A mechanism involving rate-limiting hydrogen atom abstraction by reactive oxoruthenium species is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号