首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Reaction of the deprotonated form of cis-{(t-Bu)N(H)P[μ-N(t-Bu)](2)PN(H)(t-Bu)} with CrCl(3)(THF)(3) afforded the trivalent cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li (THF)])CrCl(2) (1). Subsequent reaction with 2 equiv of vinyl Grignard (CH(2)=CH)Mg Cl gave the butadiene derivative (cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li(THF)])Cr(cis-η(4)-butadiene) (3) formally containing the metal in its monovalent state. The presence of the monovalent state was thereafter confirmed by DFT calculations. The coordination of the butadiene unit appears to be rather robust since reaction with Me(3)P afforded cleavage of the dimeric ligand core but not its displacement. The reaction formed the new butadiene complex [(t-Bu)N-P-N(t-Bu)]Cr(cis-η(4)-butadiene)PMe(3) (4) containing a regular NPN monoanion. In agreement with the presence of monovalent chromium, complexes 3 and 4 act as single-component self-activating catalysts for selective ethylene trimerization and dimerization, respectively.  相似文献   

2.
Reaction of UCl(4) with 5 equiv of Li(N═C(t)BuPh) generates the homoleptic U(IV) ketimide complex [Li(THF)(2)][U(N═C(t)BuPh)(5)] (1) in 71% yield. Similarly, reaction of UCl(4) with 5 equiv of Li(N═C(t)Bu(2)) affords [Li(THF)][U(N═C(t)Bu(2))(5)] (2) in 67% yield. Oxidation of 2 with 0.5 equiv of I(2) results in the formation of the neutral U(V) complex U(N═C(t)Bu(2))(5) (3). In contrast, oxidation of 1 with 0.5 equiv of I(2), followed by addition of 1 equiv of Li(N═C(t)BuPh), generates the octahedral U(V) ketimide complex [Li][U(N═C(t)BuPh)(6)] (4) in 68% yield. Complex 4 can be further oxidized to the U(VI) ketimide complex U(N═C(t)BuPh)(6) (5). Complexes 1-5 were characterized by X-ray crystallography, while SQUID magnetometry, EPR spectroscopy, and UV-vis-NIR spectroscopy measurements were also preformed on complex 4. Using this data, the crystal field splitting parameters of the f orbitals were determined, allowing us to estimate the amount of f orbital participation in the bonding of 4.  相似文献   

3.
Treatment of CrCl(2)(THF)(2) with NaOSi(t)Bu(3) afforded the tetrameric "box" [Cr(mu-Cl)(mu-OSi(t)Bu(3))](4) (1, X-ray). THF cleaved 1 to provide trans-(silox)ClCr(THF)(2) (2), whereas degradation of 1 with 4-picoline caused disproportionation and the generation of trans-Cl(2)Cr(4-pic)(2) and trans-(silox)(2)Cr(4-pic)(x) (n = 2, 3; 3, 3-4-pic). Chromous centers in 1 were antiferromagnetically coupled, and density functional calculations on the high-spin (multiplicity = 17) model [Cr(mu-Cl)(mu-OH)](4) (1') revealed that its singly occupied 3d orbitals spanned an energy range of approximately 2 eV. The addition of 8 equiv of Na(silox) to 1 yielded [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na.C(6)H(6) (4, Y shaped, angle OCrO(Na) = 91.28(7) degrees), and treatment of 4 with dibenzo-18-crown-6 produced [(silox)(3)Cr][Na(dibenzo-18-crown-6)] (5, angle OCrO = approximately 120 degrees, (120 + alpha) degrees, (120 - alpha) degrees). Calculations of [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na (4') and Cr(silox)(3)(-) (5') provided reasonable matches with the experimental geometries (X-ray). The trigonal chromic derivative (silox)(3)Cr (6) was synthesized from CrCl(3)(THF)(3) for structural and calculational comparisons to the chromous derivatives.  相似文献   

4.
The synthesis and characterization of the mononuclear chromium(II) terphenyl substituted primary amido-complexes Cr{N(H)Ar(Pr(i)(6))}(2) (Ar(Pr(i)(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2) (1), Cr{N(H)Ar(Pr(i)(4))}(2) (Ar(Pr(i)(4)) = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2) (2), Cr{N(H)Ar(Me(6))}(2) (Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2) (4), and the Lewis base adduct Cr{N(H)Ar(Me(6))}(2)(THF) (3) are described. Reaction of the terphenyl primary amido lithium derivatives Li{N(H)Ar(Pr(i)(6))} and Li{N(H)Ar(Pr(i)(4))} with CrCl(2)(THF)(2) in a 2:1 ratio afforded complexes 1 and 2, which are extremely rare examples of two coordinate chromium and the first stable chromium amides to have linear coordinated high-spin Cr(2+). The reaction of the less crowded terphenyl primary amido lithium salt Li{N(H)Ar(Me(6))} with CrCl(2)(THF)(2) gave the tetrahydrofuran (THF) complex 3, which has a distorted T-shaped metal coordination. Desolvation of 3 at about 70 °C gave 4 which has a formally two-coordinate chromous ion with a very strongly bent core geometry (N-Cr-N= 121.49(13)°) with secondary Cr--C(aryl ring) interactions of 2.338(4) ? to the ligand. Magnetometry studies showed that the two linear chromium species 1 and 2 have ambient temperature magnetic moments of about 4.20 μ(B) and 4.33 μ(B) which are lower than the spin-only value of 4.90 μ(B) typically observed for six coordinate Cr(2+). The bent complex 4 has a similar room temperature magnetic moment of about 4.36 μ(B). These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 μ(B) because λ (the spin orbit coupling parameter) is positive. The three-coordinated complex 3 had a magnetic moment of 3.79 μ(B).  相似文献   

5.
Lewis RA  Wu G  Hayton TW 《Inorganic chemistry》2011,50(10):4660-4668
Reaction of MnCl(2) with 4 equiv of Li(N=C(t)Bu(2)) generates [Li(THF)](2)[Mn(N=C(t)Bu(2))(4)] (1) in 80% yield. Oxidation of 1 with 0.5 equiv of I(2) produces [Li][Mn(N=C(t)Bu(2))(4)] (2) in 88% yield. Both complexes 1 and 2 exhibit tetrahedral structures about the Mn center in the solid-state, as determined by X-ray crystallography. Reaction of 2 with 12-crown-4 generates [Li(12-crown-4)(2)][Mn(N=C(t)Bu(2))(4)] (3) in 94% yield. Interestingly, in the solid-state, complex 3 exhibits a squashed tetrahedral structure about Mn. Addition of 1 equiv of I(2) to 1 generates the Mn(IV) ketimide, Mn(N=C(t)Bu(2))(4) (4), in 75% yield. Complex 4 was fully characterized, including analysis by X-ray crystallography and cyclic voltammetry. Like 3, complex 4 also exhibits a squashed tetrahedral structure in the solid-state. Interestingly, thermolysis of complex 4 at 50 °C for 6 h results in the formation of Mn(3)(N=C(t)Bu(2))(6) (6), which can be isolated in 49% yield. Also observed in the reaction mixture is pivalonitrile, isobutylene, and isobutene, the products of ketimide ligand oxidation. We have also synthesized the homoleptic Cr(IV) ketimide complex, Cr(N=C(t)Bu(2))(4) (5), and have analyzed its electrochemical properties with cyclic voltammetry.  相似文献   

6.
We have prepared and structurally characterized several complexes of chromium coordinated by diimine (or 1,4-diazadiene) ligands, that is, Ar-N=C(R)-(R)C=N-Ar (RL(Ar)) (where Ar = 2,6-diisopropylphenyl ("iPr") or 2,6-dimethylphenyl ("Me") and R = H or Me). The reaction of CrCl2 with HLiPr gave dinuclear [(HLiPr)Cr]2(mu-Cl)3(Cl)(THF) when isolated from Et2O; in THF solution, however, the product exists as mononuclear (HLiPr)CrCl2(THF)2. Two isostructural derivatives, (MeLMe)CrCl2(THF)2 and (HL(Me))CrCl2(THF)2, have also been prepared. Furthermore, the bis-ligand complex, (HLiPr)2Cr, has been prepared along with its reduction product, Li(THF)4[(HLiPr)2Cr]. We have also synthesized the tetracarbonyl complex, (HLiPr)Cr(CO)4, by addition of HLiPr to Cr(CO)4(NCCH3)2. The structure and variable temperature magnetic susceptibility of the previously reported Cr halide dimer, [(HLiPr)Cr(mu-Cl)]2, is also discussed in detail. All of the diimine complexes have been characterized structurally, spectroscopically, and magnetically, and their electronic structures are discussed with the aid of density-functional theory calculations.  相似文献   

7.
Reduction of [Cr(N(3)N)] (1) [(N(3)N)(3)(-) = ((SiMe(3)NCH(2)CH(2))(3)N)(3)(-)] with sodium powder in THF affords the yellow, extremely air-sensitive amidochromate(II) [Na(THF)(2)Cr(N(3)N)] (2) in good yield. Complex 2 has an effective magnetic moment of 5.1 mu(B) indicative of a d(4) high-spin electronic configuration. (1)H NMR spectroscopy in solution and single-crystal X-ray crystallography show that compound 2 is composed of idealized C(s) symmetric contact ion pairs, in which trigonal-monopyramidal [Cr(II)(N(3)N)](-) anions are linked to the [Na(THF)(2)](+) countercations by two bridging amide ligands. DFT calculations of 1, 2, and the anion [Cr(N(3)N)](-) at the RI-BP86/TZVPP level of theory provide in combination with extended Hückel calculations a rationale for the observed structural changes from 1 to 2.  相似文献   

8.
Red-black [HIPTN3N]Cr (1) ([HIPTN3N]3- = [(HIPTNCH2CH2)3N]3- where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = HexaIsoPropylTerphenyl) can be prepared from CrCl3, while green-black [HIPTN3N]Cr(THF) (2) can be prepared from CrCl3(THF)3. Reduction of {1|2} (which means either 1 or 2) with potassium graphite in ether at room temperature yields [HIPTN3N]CrK (3) as a yellow-orange powder. There is no evidence that dinitrogen is incorporated into 1, 2, or 3. Compounds that can be prepared readily from {1|2} include red [HIPTN3N]CrCO (4), blood-red [HIPTN3N]CrNO (6), and purple [HIPTN3N]CrCl (7, upon oxidation of {1|2} with AgCl). The dichroic (purple/green) Cr(VI) nitride, [HIPTN3N]CrN (8) was prepared from Bu4NN3 and 7. X-ray studies have been carried out on 4, 6, and 7, and on two co-crystallized compounds, 7 and [HIPTN3N]CrN3 (65:35) and [HIPTN3N]CrN3 and 8 (50:50). Exposure of a degassed solution of {1|2} to an atmosphere of ammonia does not yield "Cr(NH3)" as a stable and well-behaved species analogous to Mo(NH3). An attempt to reduce dinitrogen under conditions described for the catalytic reduction of dinitrogen by [HIPTN3N]Mo compounds with 8 yielded a substoichiometric amount (0.8 equiv) of ammonia, which suggests that some ammonia is formed from the nitride but none is formed from dinitrogen.  相似文献   

9.
Reaction of the divalent [(t-Bu)NP(Ph)(2)N(t-Bu)]CrCl(2)Li(THF)(2) (1) with 1 equiv of vinyl Grignard (CH(2)=CH)MgCl reproducibly afforded the triangulo {π-[(t-Bu)N-P(Ph)(2)-N(t-Bu)]Cr}(2)(μ,μ',η(4),η(4)'-C(4)H(4)){σ-[(t-Bu)N-P(Ph)(2)-N(t-Bu)]Cr} (2) containing a σ-/π-bonded butadiene-diyl unit. The diene-diyl moiety was generated by an oxidative coupling and deprotonation of two vinyl anions. The crystal structure revealed that of the three chromium atoms, each bearing one NPN ligand, two are perpendicularly bonded to the two sides of the π-system of the butadiene-diyl residue in a sort of inverted sandwich type of structure. The third is instead coplanar with the doubly deprotonated C(4) unit and σ-bonded to the two terminal carbon atoms. Despite the appearance as a Cr(II)/Cr(I) mixed valence species, DFT calculations have revealed that the structure of 2 consists of three divalent chromium atoms, while the additional electron resides on the π-system of the bridging organic residue. Complex 2 behaves as a single component selective catalyst for ethylene trimerization.  相似文献   

10.
This report describes the synthesis, structural characterization, and polymerization behavior of a series of chromium(II) and chromium(III) complexes ligated by tris(2-pyridylmethyl)amine (TPA), including chromium(III) organometallic derivatives. For instance, the combination of TPA with CrCl(2) yields monomeric (TPA)CrCl(2) (1). A similar reaction of CrCl(2) with TPA, followed by chloride abstraction with NaBPh(4) or NaBAr(F)(4) (Ar(F) = 3,5-(CF(3))(2)C(6)H(3)), provides the weakly associated cationic dimers [(TPA)CrCl](2)[BPh(4)](2) (2A) and [(TPA)CrCl](2)[BAr(F)(4)](2) (2B), respectively. X-ray crystallographic analysis reveals that each chromium(II) center in 1, 2A, and 2B is a tetragonally elongated octahedron; such Jahn-Teller distortions are consistent with the observed high spin (S = 2) electronic configurations for these chromium(II) complexes. Likewise, reaction of CrCl(3)(THF)(3) with TPA, followed by anion metathesis with NaBPh(4) or NaBAr(F)(4), yields the monomeric, cationic chromium(III) complexes [(TPA)CrCl(2)][BPh(4)] (4A) and [(TPA)CrCl(2)][BAr(F)(4)] (4B), respectively. Treatment of 4A with methyl and phenyl Grignard reagents produces the cationic chromium(III) organometallic derivatives [(TPA)Cr(CH(3))(2)][BPh(4)] (5) and [(TPA)CrPh(2)][BPh(4)] (6), respectively. Similar reactions of 4A with organolithium reagents leads to intractable solids, presumably due to overreduction of the chromium(III) center. X-ray crystallographic analysis of 4A, 5, and 6 confirms that each possesses a largely undistorted octahedral chromium center, consistent with the observed S = (3)/(2) electronic ground states. Compounds 1, 2A, 2B, 4A, 4B, 5, and 6 are all active polymerization catalysts in the presence of methylalumoxane, producing low to moderate molecular weight high-density polyethylene.  相似文献   

11.
The high-yield synthesis, spectroscopic and structural determination of three new uranium(IV) and thorium(IV)ate complexes supported by three different diamido ether ligands are reported. The reaction of Li2[2,6-iPr2PhN(CH2CH2)]2O (Li2[DIPPNCOCN]) with 1 equiv. of UCl4 in THF generates [DIPPNCOCN]UCl3Li(THF)2(1), while reaction in toluene/ether gives salt-free [DIPPNCOCN]UCl2.1/2C7H8(2), which was identified by paramagnetically shifted 1H NMR. Reaction of 0.5 equiv. of {[tBuNON]UCl2}2([tBuNON]=[(CH3)3CN(Si(CH3)2)]2O2-) with 3.5 equiv. LiI in toluene and a minimal amount of THF results in [tBuNON]UI3Li(THF)2(3) and is very similar in structure to 1. {[MesNON]ThCl3Li(THF)}2(4), a dimeric complex with a Th2Li2Cl6 core, is prepared by reaction of Li2[2,4,6-Me3PhN(Si(CH3)2)]2O (Li2[MesNON]) with ThCl4 in THF. The analogous reaction in toluene did not yield the salt-free complex but rather a sterically crowded diligated compound, [MesNON]2Th (5), which was also structurally characterized. Complex 5 was prepared rationally by reacting 2 equiv. Li2[MesNON] with ThCl4 in toluene. The reaction of 1 and 3 with 2 equiv. of LiCH2Si(CH3)3 generates the stable, salt-free organoactinides [DIPPNCOCN]U(CH2Si(CH3)3)2(6) and [tBuNON]U(CH2Si(CH3)3)2(7). Complex 6 was structurally characterized. These reactions illustrate the viability of ate complexes as useful synthetic precursors.  相似文献   

12.
Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.  相似文献   

13.
Reduction of {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}CrCl (3) with NaH afforded the dinuclear dinitrogen complex {[{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)]2(mu-N2)}.THF (5). Reaction carried in exclusion of dinitrogen afforded instead deprotonation of the ligand with the formation of {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF) (4). Further reduction of 5 with NaH yielded a curious dinuclear compound formulated as [{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)][{2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF)](mu-N2 H)(mu-Na)2 (6) containing two sodium atoms only bound to the dinitrogen unit and the pi systems of the two diiminepyridine ligands. Subsequent reduction with NaH triggered a complex series of events, leading to the formation of a species formulated as {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(mu-NH)][Na(THF)] (7) on the basis of crystallographic, spectroscopic, isotopic labeling, and chemical degradation experiments.  相似文献   

14.
The reaction of [(TMS)2N]3La(mu-Cl)Li(THF)3 (1) and HSPh produced a bimetallic complex [{(TMS)2N}2La(THF)]2(mu-SPh)(mu-Cl)] (2). Compound [{(TMS)2N}2La5O(SPh)10LiCl2(THF)6] (3) was prepared by control of the hydrolysis of 2 and LiCl or 1 and HSPh with the proper amount of water. 1 was treated first with 1/6 equiv of H2O and then with equimolar HSPh; a polymeric complex [{(TMS)2N}2(mu-SPh)La(mu-SPh)Li(THF)2](infinity) (4) was isolated. 3 contains a central [(mu-SPh)4(mu3-SPh)2{La(THF)}4(mu3-O)]4+ tetrahedral fragment in which two La atoms are linked by a pair of mu-SPh- and mu3-Cl- ligands to a [{(TMS)2N}2La]+ fragment, while the other two are bridged by two mu-SPh- ligands to a [Li(THF)2]+ fragment, forming a bee-shaped structure.  相似文献   

15.
From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.  相似文献   

16.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

17.
The chromium chemistry of two positional isomers of the ligand 2-[(N-arylamino)phenylazo]pyridine (HL(1)and HL(2)) are described. While the ligand HL(1) coordinates as a bischelating tridentate N,N,N-donor, [L(1)](-), with deprotonation of the amine nitrogen, its isomer HL(2) coordinates as a neutral bidentate N,N-donor. The amine nitrogen in this case remains protonated. Thus the reaction of CrCl(3).nH(2)O with HL(1) produced the brown cationic complex, [Cr(L(1))(2)](+), [1](+). The representative X-ray structure of [1a](ClO(4)) is reported. The two azo nitrogens of the anioinc tridentate ligand approach the metal center closest with Cr(1)-N(azo) av 1.862(6) A. There is a significant degree of ligand backbone conjugation in the coordinated ligands, which resulted in shortening of the C-N distances and also in lengthening of the diazo (N=N) distances. Two synthetic approaches for the synthesis of chromium complexes of HL(2) are investigated. The first approach is based on the substitution reaction, wherein all the coordinated CO ligands of Cr(CO)(6) were completely substituted by the three bidentate HL(2) ligands to produce a violet complex [Cr(HL(2))(3)]. The second approach is based on para-amination reaction of coordinated 2-(phenylazo)pyridine (pap). Thus the reaction of an inert complex, [CrCl(2)(pap)(2)], with ArNH(2) yields a mixed ligand complex, [CrCl(2)(pap)(HL(2))], 3. In this reaction one of the two coordinated pap ligands in [CrCl(2)(pap)(2)] undergoes amination at the para carbon (with respect to the diazo function) to yield HL(2) in situ. This metal-promoted transformation is authenticated by the X-ray structure determination of a representative complex, [CrCl(2)(pap)(HL(2a))], 3a. Notable differences in bond distances along the ligand backbones of the two coordinated ligands in 3a indicate different levels of metal-ligand overlap in this complex. All the chromium complexes of HL(2) are characterized by their intense blue-violet color. The frequencies of the visible range transitions in these complexes linearly correlate with the Hammett's substitution constant. Intraligand charge-transfer transitions in the visible region are believed to be responsible for the intense color. Redox properties of all these complexes are reported.  相似文献   

18.
Reaction of trans-(dmpe) 2CrCl2 (dmpe=1,2-bis(dimethylphosphino)ethane) with one equivalent of LiCCSiMe3 and one equivalent of nBuLi in THF under a dinitrogen atmosphere affords dark orange trans,trans-[(Me 3SiCC)(dmpe)2Cr]2(micro-N2).hexane (1). Under similar conditions but in the absence of acteylide ligand, the reaction of trans-(dmpe)2CrCl2 with 2 equivalents of nBuLi yields the previously characterized complex trans-(dmpe)2Cr(N2)2 (2), while the reaction of trans-(dmpe)2CrCl2 with 2 equivalents of LiCCSiMe3 in THF yields trans-(dmpe)2Cr(CCSiMe3)2 (3). Compound 3 can also be synthesized by irradiating a mixture of trans-(dmpe)2CrMe2 and HCCSiMe3 or by reduction of HCCSiMe3 with compound 2. The magnetic properties, electrochemistry, and crystal structure of trans,trans-[(Me3SiCC)(dmpe)2Cr]2(micro-N2) are consistent with the complex containing two CrI ions bridged by a neutral N2 moiety, with a 1.178(10) A N[TRIPLE BOND]N bond distance. For complex 1 redox processes centered at E1/2=-1.69 V (DeltaEp=185 mV) and -1.43 V (DeltaEp=182 mV) versus Fe(Cp)2/Fe(Cp)2+ are assigned to the CrICrI/CrICrII and CrICrII/CrIICrII couples, respectively. For trans-(dmpe)2Cr(CCSiMe3)2 a reversible couple assigned as the CrII/III couple was observed at -1.59 V (DeltaEp=242 mV) versus Fe(Cp)2/Fe(Cp)2+. The dinuclear CrI-dinitrogen complex 1 has a room temperature magnetic moment of 2.77 microB while compound 3 displays a moment of 2.55 microB. Density-functional theory calculations performed on a model compound of 1, namely, trans,trans-[(HCC)(dpe)2Cr]2(micro-N2) (dpe=diphospinoethane), indicate that oxidation of the molecule should result in weakening of the dinitrogen triple bond.  相似文献   

19.
Oxidation of Cr[N(SiMe(3))(2)](2)(THF)(2) with iodine and dicumyl peroxide results in tetrahedral Cr(iv) Cr[N(SiMe(3))(2)](2)I(2) and trigonal planar Cr(iii) Cr[N(SiMe(3))(2)](OCMe(2)Ph)(2), respectively; both complexes have been characterised by single-crystal X-ray diffraction, and both are active for ethylene polymerisation with alkylaluminium co-catalysts.  相似文献   

20.
Oxidation of [Li(DME)(3)][U(CH(2)SiMe(3))(5)] with 0.5 equiv of I(2), followed by immediate addition of LiCH(2)SiMe(3), affords the high-valent homoleptic U(V) alkyl complex [Li(THF)(4)][U(CH(2)SiMe(3))(6)] (1) in 82% yield. In the solid-state, 1 adopts an octahedral geometry as shown by X-ray crystallographic analysis. Addition of 2 equiv of tert-butanol to [Li(DME)(3)][U(CH(2)SiMe(3))(5)] generates the heteroleptic U(IV) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(3)] (2) in high yield. Treatment of 2 with AgOTf fails to produce a U(V) derivative, but instead affords the U(IV) complex (Me(3)SiCH(2))Ag(μ-CH(2)SiMe(3))U(CH(2)SiMe(3))(O(t)Bu)(2)(DME) (3) in 64% yield. Complex 3 has been characterized by X-ray crystallography and is marked by a uranium-silver bond. In contrast, oxidation of 2 can be achieved via reaction with 0.5 equiv of Me(3)NO, producing the heteroleptic U(V) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(4)] (4) in moderate yield. We have also attempted the one-electron oxidation of complex 1. Thus, oxidation of 1 with U(O(t)Bu)(6) results in formation of a rare U(VI) alkyl complex, U(CH(2)SiMe(3))(6) (6), which is only stable below -25 °C. Additionally, the electronic properties of 1-4 have been assessed by SQUID magnetometry, while a DFT analysis of complexes 1 and 6 is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号