首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

2.
《Polyhedron》1999,18(8-9):1135-1140
The preparation of several new gold(I) complexes by chloride metathesis of [AuCl(HL)] [HL=Ph2PNHP(O)Ph2] with either HL or K[Ph2P(E)NP(E)Ph2] (E=S or Se) is described. All compounds were characterised by a combination of 31P{1H}, 1H and IR spectroscopy, microanalysis and X-ray crystallography. X-ray structural studies reveal that [Au(HL)2]Cl [monoclinic, space group P21/c, a=9.0726(3) Å, b=21.0847(6) Å, c=12.0131(3) Å, β=105.1090(10)°, V=2219 Å3, Z=2, final R=3.97] forms a one dimensional polymeric structure in which alternating [Au(HL)2]+ and Cl ions are linked through intermolecular N–H⋯Cl hydrogen-bonding. In contrast the three-co-ordinate compound [Au{Ph2P(Se)NP(Se)Ph2-Se,Se′}(HL)] [monoclinic, space group P21/a, a=21.6752(5) Å, b=9.1200(10) Å, c=24.0742(7) Å, β=106.080(2)°, V=4573 Å3, Z=4, final R=8.94] forms hydrogen-bonded dimer pairs analogous to that previously observed in non-complexed HL. The X-ray crystal structure of the gold(I) precursor [AuCl(HL)] has also been determined: monoclinic, space group P21/c, a=10.217(8) Å, b=23.256(5) Å, c=20.086(5) Å, β=101.15(4)°, V=4683 Å3, Z=8, final R=5.2. The X-ray crystal structure reveals intermolecular N–H⋯OP hydrogen-bonding between adjacent [AuCl(HL)] molecules forming infinite chains.  相似文献   

3.
4.
5.
The halocarbonyls BrM(CO)5, M = Mn and Re, were reacted with the KN(SePPh2)2 salt in equimolar amounts; the reactions were thermally carried out and resulted in the generation of the hexacoordinated isostructural complexes [M(CO)4{Ph2P(Se)NP(Se)Ph2-Se,Se′}] with a twist MSePNPSe ring conformation. Complexes’ characterizations were achieved by IR, mass, NMR (1H, 13C, 31P, 77Se) spectroscopies, and by single-crystal X-ray diffraction.  相似文献   

6.
7.
Metal-halide complexes of a multidentate monoanionic ligand tBuN(H)SiMe2N(CH2CH2PiPr2)2, H[N2P2], with Ti, V, Cr, Mn, Fe, Co, and Ni have been isolated and characterized. X-ray crystallographic studies were performed on [N2P2]TiCl2 (3), [N2P2]CrCl2 (5), [N2P2]MnCl (6), [N2P2]FeCl (7), [N2P2]CoCl (8), and [N2P2]NiBr (9), and the results revealed that the [N2P2] ligand exhibits considerable flexibility in the manner in which it binds to first-row metals and that three distinct coordination modes are observed: kappa3-N2P (Ti), kappa3-NP2 (Mn, Fe, Co), and kappa4-N2P2 (Cr, Ni). Electrochemical (CV) data and room-temperature magnetic susceptibilities are also described.  相似文献   

8.
Crystal Structure of the Oxophosphazene [Ph3PNPPh2NP(O)Ph2] Single crystals of [Ph3PNPPh2NP(O)Ph2] were obtained as a by‐product from the synthesis of [NaNPPh3]6 as a result of partial hydrolysis. According to the crystal structure determination the compound forms a molecular structure with a PNPNP chain with PN distances between 155.3(6) and 159.8(5) pm and PNP bond angles of 143.2(4) and 140.7(4)°. Space group P1¯, Z = 2, lattice dimensions at 213 K: a = 922.7(1); b = 1040.1(1); c = 1908.0(1) pm; α = 90.55(1)°; β = 103.01(1)°; γ = 92.87(1)°; R = 0.0859.  相似文献   

9.
Abstract

Reactions of PF5 and TaF5 with [Ph2P(O)]2 C=CH2 (I) and [Ph2P(O)]2 C=PPh3 (II) in MeCN and CH2Cl2 were studied by means of 19F, 31P, 1H and 13C NMR spectroscopy. It has become evident, that one or two phosphoryl groups in (I) and (II), as well as in cis- and trans-Ph2P(O)CH=CHP(O)Ph2, are involved in complex formation. The formation of tetra-fluoro cations PFL and PF4L along with pentafluorocom-plexes PF5L and TaF5L was found. Ligands are coordinated with central ions of complexes as chelates. The trans-atoms F1 of TaF 5L are nonequivalent because of nonsymmetric position to the Ph3P-group. The F1-atoms in PF4L are supposed to be symmetric to the Ph3P-group. The formation of tri-fluorocomplexes TaOF3L was also observed. Since the position of 19F NMR resonance lines of TaOF3L is near to that of pentafluorocomplexes, it can be supposed that either the change of Ta coordination number takes place, either oxygen atom comes into complex with inner sphere in the reaction with ligand or during hydrolysis.  相似文献   

10.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

11.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

12.
Iodination of Ph2Te2Se by molecular iodine is directed towards the Te atom and yields {diiodo[(phenyltellanyl)selanyl]‐λ4‐tellanyl}benzene, PhTeSeTeI2Ph or C12H10I2SeTe2. The molecule can be considered as a chimera of PhTeSeR, PhTeSeTePh and R′TeI2Ph fragments. The crystal structure features a complex interplay of the supramolecular synthons Te…π(Ph), Se…Te and I…Te, combining molecules into a three‐dimensional framework. Their combination affords long‐range supramolecular synthons which are fused in a way resembling the mythological chimera and could be defined as chimeric supramolecular synthons. The energies of the intermolecular interactions have also been calculated and analyzed.  相似文献   

13.
根据配合物H2C[P(Ph)2AUX]2(X=I,CI)和HC[P(Ph)2AUX]3(X=I,CI)的晶体结构对它们进行了从头算研究,在MP2近似水平下得到绕C-P旋转所产生构象的势能曲线,从而揭示AU(I)-AU(I)相互作用. 计算结果表明,在所研究的四个配合物中均存在AU(I)-AU(I)相互作用,该作用较弱,约为10. 0~16. 5kJ/mol,与Schmibaur的实验估计值和Pyykko等对其它模型配合物的计算结果接近.  相似文献   

14.
15.
A new indene-based ligand featuring pendant phosphine sulfide and amine donor fragments has been developed; Rh(I) coordinates to the neutral form of the ligand in a kappa2-[N,S] fashion, while the anionic form of the ligand binds Rh(I) and Mn(I) in kappa2-[C,S] and eta5 modes, respectively.  相似文献   

16.
17.
The novel phosphinite PPh(2)(3-OCH(2)C(5)H(4)N) (1) has been synthesized, and its coordination properties to Ag(I) have been studied. When reacted in a 1:1 ratio with Ag(I), coordination polymers with different coordination numbers about the Ag are found depending on the anion. For PPh(2)(3-OCH(2)C(5)H(4)N)AgBF(4) (2), a two-coordinate Ag is observed with a P-Ag-N angle of 167 degrees. Mixed three and four coordination about Ag is observed for PPh(2)(3-OCH(2)C(5)H(4)N)AgOTf (3), and for the trifluoroacetate derivative, PPh(2)(3-OCH(2)C(5)H(4)N)Agtfa (4), only a four-coordinate Ag is produced. X-ray crystal-structure determinations for compounds 2-4 have been carried out. The X-ray structures show a wide range of Ag-Ag distances in the polymers, which are dependent on the conformation of the bridging ligand.  相似文献   

18.
The reaction of one equivalent of In with a molten flux of (Ph4P)2Se5 and P2Se5 (1 : 2), at 250 °C gave the (Ph4P)[In(P2Se6)] ( I ). Stoichiometric elemental synthesis at 750 °C produced the Cs5In(P2Se6)2 ( II ). The thin, yellow crystals of ( I ), and the irregular, dark orange crystals of ( II ), appear to be air- and water-stable. Compound ( I ) crystallizes in the monoclinic space group C2/c (no. 15) and at 23 °C: a = 23.127(7) Å, b = 6.564(1) Å, c = 19.083(3) Å, β = 97.42(2)°, V = 2873(1) Å3, Z = 4, final R/Rw = 4.4/5.2%. Compound ( II ) crystallizes in the tetragonal space group P42/m (no. 84) and at 23 °C: a = b = 13.886(1) Å, c = 7.597(2) Å, V = 1464.9(3) Å3, Z = 2, final R/Rw = 3.9/5.1%. Compound ( I ) contains infinite [In(P2Se6)]nn– with a structure related to that of K2FeP2Se6. Compound ( II ) contains the discrete [In(P2Se6)2]5– which can be viewed as a fragment of the [In(P2Se6)]nn– chain.  相似文献   

19.
A series of porphyrins substituted in one or two meso positions by diphenylphosphine oxide groups has been prepared by the palladium-catalyzed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination, and reductive elimination steps, as the stoichiometric reaction of eta(1)-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable-temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron-withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterized by multinuclear NMR and UV-visible spectroscopy, as well as mass spectrometry. Single-crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighboring zinc porphyrin through an almost linear P=O...Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.  相似文献   

20.
The title compound, [Au(C7H7S)(C18H15P)], is conformationally chiral and crystallizes from benzene–hexane as individually enantiopure crystals. This mononuclear compound has the AuI atom linearly bound to a triphenylphosphine P atom and to a phenyl C atom of a 2‐(methylsulfanyl)phenyl group. The angle at the AuI atom is 175.9 (2)°. The linear ligand coordination about the AuI atom has geometric parameters inside the remarkably narrow range found for gold complexes bound by a phosphine ligand and by the ortho‐C atom of a substituted phenyl group. This is the first example of gold(I) attached to a methylsulfanyl aromatic carbanion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号