首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用溶胶-凝胶法制备了Sn0.5Ti0.5O2固溶体.用X射线衍射(XRD)、差热分析(DTA)和红外(IR)技术对材料的结构和热稳定性进行了分析表征.固溶体的热稳定性与起始反应温度有关,在40℃水浴温度下制备的凝胶经1000℃烧结,发生了相分解,出现了富Sn和富Ti相,而在80℃水浴温度下制备的凝胶经1200℃烧结也不发生相分解,仍以Sn0.5Ti0.5O2相存在,而且用差热分析也得到了同样的结论.  相似文献   

2.
BaCe_(0.8)Y_(0.2)O_(3-α)的溶胶-凝胶法合成及其电性能   总被引:3,自引:0,他引:3  
贾定先  马桂林  石慧 《化学学报》2002,60(10):1737-1741
用溶胶-凝胶法合成了BaCe_(0.8)Y_(0.2)O_(3-α)固体电解质前驱体,并以低 于通常固相反应150~250 ℃的温度(即1400~1500 ℃)进行了烧结。以烧结体样 品为固体电解质、多孔性铂为电极,组成氢及氧浓差电池、氢-空气燃料电池,测 定了BaCe_(0.8)Y_(0.2)O_(3-α)烧结体的质子和氧离子迁移数以及燃料电池的性 能,并与高温固相反应法合成的样品进行了比较。结果表明,烧结温度能显著影响 溶胶-凝胶法合成样品的质子迁移数及燃料电池性能。烧结温度≥ 1450 ℃时,质 子迁移数近似为1,燃料电池性能亦较高,烧结温度< 1450 ℃时,质子迁移数< 1 ,燃料电池性能亦较低。在1400~1500 ℃烧结的样品中,1450 ℃下烧结的样品具 有最高的电池性能,接近于高温固相反应法合成的样品。  相似文献   

3.
采用水热法制备MgWO_4:Nd~(3+)近红外发光材料.通过XRD,SEM和发光光谱等手段对样品的物相、形貌、发光性质进行表征.XRD测试结果表明:水热法制备MgWO_4:Nd~(3+)在850℃以上煅烧时,四方晶系转变为单斜晶系;1050℃煅烧后,sEM显示样品形貌由片状变为棒状且分散良好;激发和发射光谱的对比研究表明,MgWO_4:Nd~(3+)中WO_4~(2-)对Nd~(3+)存在有效的能量传递.研究了Nd~(3+)的掺杂量、煅烧温度、煅烧时间对材料近红外发光的影响.结果表明:在1050℃煅烧时,Nd~(3+)掺杂量为0.5%时发光最强;随着煅烧温度的升高,MgWO_4:Nd~(3+)的近红外发光强度先增强后减弱,而煅烧时间对发光强度影响很小.  相似文献   

4.
董澎  王柯  李军方  傅强 《高分子学报》2020,(1):117-124,I0005
利用新的单中心Ziegler-Natta(Z-N)催化剂,通过干预分子链的生长与聚集行为,可获得低缠结的超高分子量聚乙烯(UHMWPE)初生树脂.本研究利用这类低缠结UHMWPE,通过设置不同的烧结温度(Ts)来改变熔体缠结状态,并探讨了链缠结程度对烧结制品结构与性能的影响.实验结果表明TS=220℃下,UHMWPE样品发生显著的复缠,造成高缠结度;而Ts=170℃下,初始低缠结状态能够得以充分保留,从而获得了缠结度具有明显差别的不同样品.示差扫描量热法(DSC)测试表明,在Ts=170℃下,低缠结度有利于在随后等温及冷却结晶过程中生成高熔点(最高达141℃)晶体与高的结晶度(最高达65%).力学测试表明低缠结度制品的综合力学性能显著提升,其中屈服强度提高72%,拉伸断裂强度提升139%,弹性模量提升162%以及断裂伸长率提升36%,实现了同时增强增韧.这就提供了一种从调节链缠结温度实现UHMWPE烧结制品高性能化的新思路.  相似文献   

5.
采用碳热还原辅助溶胶-凝胶法合成了锂二次电池正极材料LiVPO4F/C, 探讨煅烧温度和煅烧时间对所制备材料纯度、结构和电化学性能的影响. 采用X射线衍射(XRD), 扫描电子显微镜(SEM), 恒流充放电, 电化学阻抗谱(EIS)和循环伏安(CV)等手段对不同煅烧温度和时间所得的材料进行结构表征和电化学性能测试. 当煅烧时间为4 h 时, 温度为450 ℃时, 能够得到纯相LiVPO4F/C, 在0.1C、0.5C和1.0C倍率下, 电池放电比容量分别为193.2、175.6 和173.7 mAh·g-1. 随着煅烧温度升高, Li3V2(PO4)3杂相逐渐增多, 650 ℃煅烧后的材料Li3V2(PO4)3 成为主相. 优化煅烧时间也能够有效控制Li3V2(PO4)3 杂相的生成, 能得到电化学性能良好的LiVPO4F/C. 当煅烧温度为550 ℃时, 反应3 h后得到的产物综合电化学性能最优.  相似文献   

6.
用柠檬酸硝酸盐法制备高纯Ce1-xNdxO2-x/2(x=0.10, 0.15)固溶体, 加入摩尔分数为5%的Mo, 研究了Mo掺杂对烧结温度、结构及电性能的影响. 通过X射线衍射、电感偶合等离子体和场发射扫描电镜等手段对氧化物进行了结构表征, 采用交流阻抗谱测试其电性能. 柠檬酸硝酸盐法制备的前驱体经1450 ℃烧结24 h得到致密度大于96%的陶瓷材料; 加入5%Mo, 在1250 ℃下烧结8 h即可达到理想的致密度(>95%). 加入Mo在烧结过程中可加快晶界迁移, 促进晶粒生长, 显著提高了晶界电导率. 在600 ℃时Ce0.85Nd0.15O1.925的晶界电导率为2.56 S/m, 加入Mo后材料的电导率增加到5.62 S/m.  相似文献   

7.
采用中频感应熔炼法制备了Sm(Co0.79Fe0.09Cu0.085Zr0.032)7.95合金,采用传统烧结工艺,在1200~1240℃烧结1 h,1165~1190℃固溶处理3 h,快速风冷淬火后在840℃保温12 h,以0.4℃.min-1的冷速冷却至420℃,保温10 h,最后随炉冷却。磁体经过加工后,采用不同的磁性测试手段对磁体进行测试。结果表明,磁体的剩磁随烧结温度的升高而增大,矫顽力最好的工艺为1230℃烧结1 h,然后在1180℃固溶3 h。将此工艺制备的磁体采用中国计量科学院NIM-500C超高温永磁测量仪测试,磁体在773 K时的最大磁能积为10.94 MGOe,高于已经报道的同Z值的2∶17型永磁体。磁体的磁滞回线通过振动样品磁强计(VSM)测得,室温下Br=10.5 kGs,Hcj=30.21 kOe,(BH)max=25.60MGOe;773 K时磁体Br=7.45 kGs,Hcj=6.02 kOe,(BH)max=9.85 MGOe。剩磁温度系数α=-0.0624%.℃-1,矫顽力温度系数β=-0.169%.℃-1。  相似文献   

8.
王和义  傅依备  邢丕峰 《化学学报》2000,58(8):1015-1021
采用压制-烧结法制备多孔氧化铝陶瓷片,并采用溶胶-凝胶法在多孔氧化铝陶瓷载体上依次沉积孔径逐渐减小的氧化铝陶瓷膜、氧化锆陶瓷膜和氧化钛陶瓷膜,从而得到具有非对称性结构的多孔复合陶瓷膜。采用压制-烧结法,将粉末造粒、压制、干燥,然后烧结,可分别得到平均孔径大约为2μm,6μm,10μm的多孔陶瓷片,该多孔陶瓷片的开口孔隙率大于40%,断裂强度大于50N。以此陶瓷片作载体,经溶胶-凝胶法多次涂敷不同的溶胶,可分别得到孔径大约为200nm,400nm和600nm,厚度大约为40μm的多孔复合陶瓷膜。此多孔复合膜可作为气体及液体的过滤材料,也可以作为钯合金膜的支撑体。  相似文献   

9.
首次采用乙酰丙酮为钛醇盐的稳定剂,醋酸钡、醋酸锶和钛酸丁酯为原料,无水乙醇-冰醋酸作为溶剂,利用Sol-Gel法于1100℃得到单一钙钛矿相钛酸锶钡陶瓷纤维.用TG、XRD、SEM等手段对产物进行表征.  相似文献   

10.
采用柠檬酸溶胶-凝胶法制备了固体电解质Ce0.9Er0.1-xPrxO1.95+δ(x=0.02~0.08),利用X射线粉末衍射(XRD)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱研究了样品的微观结构和电性能.XRD结果表明,800℃煅烧的所有样品均形成了单相立方萤石结构;Raman光谱结果表明,Ce0.9Er0.05Pr0.05O1.95+δ具有氧缺位的立方萤石结构;XPS分析表明,Ce0.9Er0.05Pr0.05O1.95+δ存在氧缺位,Pr3+离子和Pr4+离子共存;AFM观测结果表明,1300℃下烧结的样品比1400℃下烧结的样品致密;交流阻抗谱结果表明,Pr掺杂量x=0.05时,Ce0.9Er0.05Pr0.05O1.95+δ的电导率最高(σ600℃=1.34×10-2S/cm,Ea=0.90 e V),比未掺杂Pr的Ce0.9Er0.1O1.95(σ600℃=8.81×10-3S/cm,Ea=0.92 e V)提高了52%,说明在Ce0.9Er0.1O1.95中适量掺杂Pr可提高材料的电导率,降低活化能.  相似文献   

11.
LiTi2(PO4)3/C 复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
采用聚乙烯醇(PVA)辅助溶胶-凝胶法合成了具有Na+超离子导体(NASICON)结构的LiTi2(PO4)3/C复合材料.运用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等对其结构形貌和电化学性能进行表征.实验结果表明:合成的LiTi2(PO4)3/C具有良好的NASICON结构,首次放电容量为144mAh·g-1.电化学阻抗谱测试结果显示,LiTi2(PO4)3/C复合材料电极在首次嵌锂过程中分别出现了代表固体电解质相界面(SEI)膜及接触阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律.计算了Li+在LiTi2(PO4)3中嵌入/脱出时的扩散系数,分别为2.40×10-5和1.07×10-5cm2·s-1.  相似文献   

12.
制备条件对尖晶石型LiMn2O4的相行为及结构的影响   总被引:3,自引:0,他引:3  
将LiNO3和Mn3O4按不同物质的量比[x=n(Li):n(Mn)=0.50,0.52,0.54,0.58,0.62,0.70]混合,在空气气氛下,于700℃烧结得样品.实验发现,在0.52≤x≤0.70的范围内,样品均呈现出单相的尖晶石型LiMn2O4结构,晶胞参数随着x的增加而减小.将x=0.50的LiNO3和Mn3O4混合物在不同温度(300,400,500,600和700℃)下进行烧结处理.结果表明,于300℃合成得到的样品为尖晶石型LiMn2O4,随着烧结温度的升高,晶胞参数增大;当温度大于600℃时出现杂相,可以通过加入过量的Li(即x≥0.52)来加以抑制.实验结果表明,通过控制烧结温度和Li加入量可以得到理想的尖晶石型LiMn2O4单相材料.  相似文献   

13.
The NASICON compound Li(0.2)Nd(0.8/3)Zr(2)(PO(4))(3), synthesized by a sol-gel process, has been structurally characterized by TEM and powder diffraction (neutron and X-ray). It crystallizes in the space group R3[combining macron] (No. 148): at room temperature, the Nd(3+) ions present an ordered distribution in the [Zr(2)(PO(4))(3)](-) network which leads to a doubling of the classical c parameter (a = 8.7160(3) A, c = 46.105(1) A). Above 600 degrees C, Nd(3+) diffusion occurs leading at 1000 degrees C to the loss of the supercell. This reversible cationic diffusion in a preserved 3D [Zr(2)(PO(4))(3)](-) network is followed through thermal X-ray diffraction. Ionic conductivity measurements have been undertaken by impedance spectroscopy, while some results concerning the sintering of the NASICON compound are given.  相似文献   

14.
A miniature CO2 gas sensor based on NASICON (sodium super ionic conductor) thick film was fabricated. The solid-electrolyte NASICON material was synthesized through an inorganic-reagent-based sol-gel method. The resulting materials were characterized by means of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). NASICON paste was coated on a piece of alumina substrate attached to a platinum heater. Li2CO3-BaCO3 binary carbonate in molar ratio 1 : 1.5 was utilized as the sensing electrode. Within a wide range of CO2 volume ratio concentration from 500 to 5000 ppm, the output electromotive force (EMF) of the sensor followed Nernst equation well at high working temperature. The response and recovery times were 20 and 58 s, respectively. This miniature CO2 gas sensor possessed extra merits such as low power consumption, miniaturized framework, and easy fabrication.  相似文献   

15.
以稀土氧化物为原料,用溶胶-凝胶法制备前驱液,加入适量的聚乙烯醇做成膜物质,用浸渍拉提法在石英玻璃表面上得到均匀的薄膜,然后经过适当的干燥和热处理得到Y2O3∶Eu3+发光薄膜.讨论了Eu3+的掺杂浓度和热处理温度对薄膜发光性能的影响.试验表明:Eu3+的最佳掺杂浓度为8%(摩尔分数),薄膜的发光性能随热处理温度提高而增强,当热处理温度达到700℃后,薄膜的发光性能基本上稳定.同时用原子力显微镜和X射线衍射分析了薄膜的表面形貌和结构.  相似文献   

16.
采用溶胶-凝胶(Sol-gel)法制得了固体电解质NASICON材料.用X射线衍射、红外光谱、拉曼光谱、核磁共振等方法对材料的结构、组成进行了分析,并对材料的电导率进行测量,证明材料具有快离子导电特性.通过对不同烧结温度下材料性质进行比较,发现900℃烧结温度下得到的材料具有更好的晶相结构和电导率.  相似文献   

17.
以相应的氧化物粉末和盐为原料,通过甘氨酸-硝酸盐法合成出了中温固体氧化物燃料电池(IT-SOFC)Pr1.2Sr0.8NiO4(PSNO)阴极原料粉体,并制备出了烧结体试样.采用X射线衍射(XRD)分析对所合成粉体的相组成进行了分析,分别采用热膨胀仪和四端子法对PSNO烧结体试样的热膨胀系数和电导率进行了测定,同时对该阴极材料与Sm0.2Ce0.8O1.9(sco)电解质材料的电化学阻抗谱(EIS)进行了测试分析以SCO作电解质,分别以NiO/SCO和PSNO作阳极和阴极材料,制备出固体氧化物燃料单电池,并对其性能进行测试.实验结果表明,通过甘氨酸-硝酸盐法,在1050℃以上煅烧前驱体,可以获得具有K2NiF4结构的PSNO粉体.所制备的PSNO烧结体试样在200-800℃间的热膨胀系数约为12×10-6 K-1,在450℃下的电导率约为155 S· cm-1,在400-800℃,平均电导活化能为0.034 eV.电化学阻抗谱分析结果表明,在700 ℃下PSNO阴极和SCO电解质间的比表面阻抗(ASR)为0.37Ω·cm2,而Ni-SCO/SCO/PSNO单电池的比表面阻抗为0.61Ω·cm2;所制备的SOFC单电池在800℃下的输出功率为288 mW· cm-2,开路电压为0.75 V.本研究的初步结果表明PSNO 材料是一种综合性能较为优良的新型巾温固体氧化物燃料电池阴极材料.  相似文献   

18.
刘珩  黄波  朱新坚 《电化学》2011,(4):421-426
以硝酸镧、硝酸镍和硝酸铁为原料,柠檬酸作燃料低温燃烧合成固体氧化物燃料电池阴极材料LaNi0.6Fe0.4O3-δ.X射线衍射(XRD)图谱显示,600℃煅烧可形成单一的LaNi0.6 Fe0.4 O3-δ钙钛矿相.电子显微镜(TEM和SEM)照片看出,其颗粒尺寸〈100 nm.电池交流阻抗谱图表明,在1050℃烧结制...  相似文献   

19.
La0.8Sr0.2Ga0.8Mg0.2O2.8的电化学性质及其在SOFC中的应用   总被引:3,自引:0,他引:3  
采用凝胶浇注法制备具有较高氧离子电导率的固体电解质La0.8Sr0.2Ga0.8Mg0.2O2.8粉料.X射线衍射结果表明,于1400℃焙烧后即形成了钙钛矿结构,无杂相存在.探讨了粉料压制坯体的致密化和导电性能在1450℃下与烧结时间的关系,发现烧结时间为18h时其相对密度达98.3%,而在24h的情况下,样品具有最佳的氧离子导电性.采用Ni-Ce0.8Gd0.2O1.9作为阳极,La0.8Sr0.2Ga0.6Ni0.4O2.7作为阴极,组装了平板型固体氧化物燃料电池(SOFC).阳极和阴极分别通入含3%H2O的氢气和空气,750℃时的开路电压为1.04V,最大输出功率密度(P)达252mW/cm2(U=0.48V,J=525mA/cm2).  相似文献   

20.
We report the extraordinary performance of carbon‐coated sodium super ion conductor (NASICON)‐type LiTi2(PO4)3 as an ideal host matrix for reversible insertion of both Li and Na ions. The NASICON‐type compound was prepared by means of a Pechini‐type polymerizable complex method and was subsequently carbon coated. Several characterization techniques such as XRD, thermogravimetric analysis (TGA), field‐emission (FE) SEM, TEM, and Raman analysis were used to study the physicochemical properties. Both guest species underwent a two‐phase insertion mechanism during the charge/discharge process that was clearly evidenced from galvanostatic and cyclic voltammetric studies. Unlike that of Li (≈1.5 moles of Li), Na insertion exhibits better reversibility (≈1.59 moles of Na) while experiencing a slightly higher capacity fade (≈8 % higher than Li) and polarization (780 mV) than Li. However, excellent rate capability profiles were noted for Na insertion relative to its counterpart Li. Overall, the Na insertion properties were found to be superior relative to Li insertion, which makes carbon‐coated NASICON‐type LiTi2(PO4)3 hosts attractive for the development of next‐generation batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号