首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular and electronic structure of the Fe 6S 6 H-cluster of [FeFe] hydrogenase in relevant redox and protonation states have been investigated by DFT. The calculations have been carried out according to the broken symmetry approach and considering different environmental conditions. The large negative charge of the H-cluster leads, in a vacuum, to structures different from those observed experimentally in the protein. A better agreement with experimental data is observed for solvated complexes, suggesting that the protein environment could buffer the large negative charge of the H-cluster. The comparison of Fe 6S 6 and Fe 2S 2 DFT models shows that the presence of the Fe 4S 4 moiety does not affect appreciably the geometry of the [2Fe] H cluster. In particular, the Fe 4S 4 cluster alone cannot be invoked to explain the stabilization of the mu-CO forms observed in the enzyme (relative to all-terminal CO species). As for protonation of the hydrogen cluster, it turned out that mu-H species are always more stable than terminal hydride isomers, leading to the conclusion that specific interactions of the H-cluster with the environment, not considered in our calculations, would be necessary to reverse the stability order of mu-H and terminal hydrides. Otherwise, protonation of the metal center and H 2 evolution in the enzyme are predicted to be kinetically controlled processes. Finally, subtle modifications in the H-cluster environment can change the relative stability of key frontier orbitals, triggering electron transfer between the Fe 4S 4 and the Fe 2S 2 moieties forming the H-cluster.  相似文献   

3.
Modelling the reactivity of [NiFe]- and [FeFe]-hydrogenases has been an ongoing area of research that has evolved substantially over the last two decades. Erstwhile efforts have culminated in the form of bioinspired models that not only mimic the function of the enzymes but also follow enzyme-like mechanism. Some of these synthetic mimics can override limitations such as oxygen sensitivity that has deterred the practical application of hydrogenase enzymes/models as viable hydrogen generation catalysts. This account summarizes a few such recent discoveries.  相似文献   

4.
[FeFe]-hydrogenases harbor a {2Fe3S} assembly bearing two CO and two CN- groups, a mu-CO ligand, and a vacant coordination site trans to the mu-CO group. Recent theoretical results obtained studying the isolated {2Fe3S} subsite indicated that one of the CN- ligands can easily move from the crystallographic position to the coordination site trans to the mu-CO group; such an isomerization would have a major impact on substrates and inhibitors binding regiochemistry and, consequently, on the catalytic mechanism. To shed light on this crucial issue, we have carried out hybrid QM/MM and free energy perturbation calculations on the whole enzyme, which demonstrate that the protein environment plays a crucial role and maintains the CN- group fixed in the position observed in the crystal structure; these results strongly support the hypothesis that the vacant coordination site trans to the mu-CO group has a crucial functional relevance both in the context of CO-mediated inhibition of the enzyme and in dihydrogen oxidation/evolution catalysis.  相似文献   

5.
《Comptes Rendus Chimie》2008,11(8):834-841
In the present contribution, a density functional theory (DFT) investigation is described regarding a recently synthesized Fe6S6 complex – see C. Tard, X. Liu, S.K. Ibrahim, M. Bruschi, L. De Gioia, S.C. Davies, X. Yang, L.-S. Wang, G. Sawers, C.J. Pickett, Nature 433 (2005) 610 – that is structurally and functionally related to the [FeFe]-hydrogenases active site (the so-called H-cluster, which includes a binuclear subsite directly involved in catalysis and an Fe4S4 cubane). The analysis of relative stabilities and atomic charges of different isomers evidenced that the structural and redox properties of the synthetic assembly are significantly different from those of the enzyme active site. A comparison between the hexanuclear cluster and simpler synthetic diiron models is also described; the results of such a comparison indicated that the cubane moiety can favour the stabilization of the cluster in a structure closely resembling the H-cluster geometry when the synthetic Fe6S6 complex is in its dianionic state. However, the opposite effect is observed when the synthetic cluster is in its monoanionic form.  相似文献   

6.
We have investigated the structure and the vibrational spectrum of peroxynitrite anion in aqueous solution by means of combined quantum-classical (QM/MM) molecular dynamics simulations. In our QM/MM scheme, the reactant was modeled using density functional theory with a Gaussian basis set and the solvent was described using the mean-field TIP4P and the polarizable TIP4P-FQ force fields. The choice of basis sets, functionals and force field parameters has been validated by performing calculations on isolated peroxynitrite and on small peroxynitrite-water complexes. Poor values for isolated peroxynitrite structural properties and vibrational frequencies are found for most ab initio methods, particularly regarding the ON-OO(-) bond distance and the harmonic stretching frequency, probably due to the singlet-triplet instability found in the HF wave function. On the other hand, DFT methods yield results in better agreement with high level CCSD(T) ab initio calculations. We have computed the vibrational spectrum for aqueous peroxynitrite by calculating the Fourier transform of the velocity autocorrelation function extracted from the QM-MM molecular dynamics simulations. Our computational scheme, which allows for the inclusion of both anharmonicity and solvent effects, is able to clarify previous discrepancies regarding the experimental spectra assignments and to shed light on the subtle interplay between solvation and peroxynitrite structure and properties.  相似文献   

7.
Greco C  De Gioia L 《Inorganic chemistry》2011,50(15):6987-6995
Recent advances aimed at modeling the chemistry of the active site of [FeFe]-hydrogenases (the H-cluster, composed by a catalytic Fe(2)S(2) subcluster and an Fe(4)S(4) portion) have led to the synthesis of binuclear coordination compounds containing a noninnocent organophosphine ligand [2,3-bis(diphenylphosphino)maleic anhydride, bma] that is able to undergo monoelectron reduction, analogously to the tetranuclear Fe(4)S(4) subcluster portion of the H-cluster. However, such a synthetic model was shown to feature negligible electronic communication between the noninnocent ligand and the remaining portion of the cluster, at variance with the enzyme active site. Here, we report a theoretical investigation that shows why the electron transfer observed in the enzyme upon protonation of the catalytic Fe(2)S(2) subsite cannot take place in the bma-containing cluster. In addition, we show that targeted modifications of the bma ligand are sufficient to restore the electronic communication within the model, such that electron density can be more easily withdrawn from the noninnocent ligand, as a result of protonation of the iron centers. Similar results were also obtained with a ligand derived from cobaltocene. The relevance of our findings is discussed from the perspective of biomimetic reproduction of proton reduction to yield molecular hydrogen.  相似文献   

8.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

9.
10.
Fe-only hydrogenases are enzymes that catalyze dihydrogen production or oxidation, due to the presence of an unusual Fe(6)S(6) cluster (the so-called H-cluster) in their active site, which is composed of a Fe(2)S(2) subsite, directly involved in catalysis, and a classical Fe(4)S(4) cubane cluster. Here, we present a hybrid quantum mechanical and molecular mechanical (QM/MM) investigation of the Fe-only hydrogenase from Desulfovibrio desulfuricans, in order to unravel key issues regarding the activation of the enzyme from its completely oxidized inactive state (Hoxinact) and the influence of the protein environment on the structural and catalytic properties of the H-cluster. Our results show that the Fe(2)S(2) subcluster in the Fe(II)Fe(II) redox state - which is experimentally observed for the completely oxidized form of the enzyme - binds a water molecule to one of its metal centers. The computed QM/MM energy values for water binding to the diferrous subsite are in fact over 70 kJ mol(-1); however, the affinity toward water decreases by 1 order of magnitude after a one-electron reduction of H(ox)(inact), thus leading to the release of coordinated water from the H-cluster. The investigation of a catalytic cycle of the Fe-only hydrogenase that implies formation of a terminal hydride ion and a di(thiomethyl)amine (DTMA) molecule acting as an acid/base catalyst indicates that all steps have reasonable reaction energies and that the influence of the protein on the thermodynamic profile of H(2) production catalysis is not negligible. QM/MM results show that the interactions between the Fe(2)S(2) subsite and the protein environment could give place to structural rearrangements of the H-cluster functional for catalysis, provided that the bidentate ligand that bridges the iron atoms in the binuclear subsite is actually a DTMA residue.  相似文献   

11.
This article reports a combined quantum mechanics/molecular mechanics (QM/MM) investigation on the acid hydrolysis of cellulose in water using two different models, cellobiose and a 40‐unit cellulose chain. The explicitly treated solvent molecules strongly influence the conformations, intramolecular hydrogen bonds, and exoanomeric effects in these models. As these features are largely responsible for the barrier to cellulose hydrolysis, the present QM/MM results for the pathways and reaction intermediates in water are expected to be more realistic than those from a former density functional theory (DFT) study with implicit solvent (CPCM). However, in a qualitative sense, there is reasonable agreement between the DFT/CPCM and QM/MM predictions for the reaction mechanism. Differences arise mainly from specific solute–solvent hydrogen bonds that are only captured by QM/MM and not by DFT/CPCM. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
This article reviews published literature on the electrochemical reduction and oxidation of complexes containing the Fe2S2 core characteristic of the active site of [FeFe]-hydrogenases. Correlations between reduction and oxidation potentials and molecular structure are developed and presented. In cases where the complexes have been studied with regard to their ability to catalyze the reduction of acids to give dihydrogen, the overpotentials for such catalyzed reduction are presented and an attempt is made to estimate, at least qualitatively, the efficiency of such catalysis.  相似文献   

13.
The structural evolution and bonding of a series of early transition-metal oxide clusters, V(n)O(q) (n = 3-9, q = 0,-1), have been investigated with the aid of previous photoelectron spectroscopy (PES) and theoretical calculations. For each vanadium monoxide cluster, many low-lying isomers are generated using the Saunders "Kick" global minimum stochastic search method. Theoretical electron detachment energies (both vertical and adiabatic) were compared with the experimental measurements to verify the ground states of the vanadium monoxide clusters obtained from the DFT calculations. The results demonstrate that the combination of photoelectron spectroscopy experiments and DFT calculation is not only powerful for obtaining the electronic and atomic structures of size-selected clusters, but also valuable in resolving structurally and energetically close isomers. The second difference energies and adsorption energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The adsorption energies of one O atom on the anionic (6.64 → 8.16 eV) and neutral (6.41 → 8.13 eV) host vanadium clusters are shown to be surprisingly high, suggesting strong capabilities to activate O by structural defects in vanadium oxides.  相似文献   

14.
15.
16.
 The relationship between hydrogen bonding and NMR chemical shifts in the catalytic triad of low-pH α-chymotrypsin is investigated by combined use of the effective fragment potential [(2001) J Phys Chem A 105:293] and ONIOM–NMR [(2000) Chem Phys Lett 317:589] methods. Our study shows that while the His57 Nδ1−H bond is stretched by a relatively modest amount (to about 1.060 ?) this lengthening, combined with the polarization due to the molecular environment, is sufficient to explain the experimentally observed chemical shifts of 18.2 ppm. Furthermore, the unusual down-field shift of Hɛ1 (9.2 ppm) observed experimentally is reproduced and shown to be induced by interactions with the C=O group of Ser214 as previously postulated. The free-energy cost of moving Hδ1 from His57 to Asp102 is predicted to be 5.5 kcal/mol. Received: 26 September 2001 / Accepted: 6 September 2002 / Published online: 21 January 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 222nd National Meeting of the American Chemical Society, 2001 Correspondence to: J. H. Jensen e-mail: jan-jensen@uiowa.edu Acknowledgements. This work was supported by a Research Innovation Award from the Research Corporation and a type G starter grant from the Petroleum Research Fund. The calculations were performed on IBM RS/6000 workstations obtained through a CRIF grant from the NSF (CHE-9974502) and on supercomputers at the National Center for Supercomputer Applications at Urbana-Champaign. The authors are indebted to Visvaldas Kairys for help with the CHARMM program, and to Daniel Quinn for many helpful discussions.  相似文献   

17.
The IR carbonyl stretching frequencies of [Fe2(SRS)(CO)6] complexes correlate well with their first reduction potential; an [FeFe] hydrogenase model with a very mild reduction potential has been realized by using a strongly electron deficient carborane-dithiolate bridge.  相似文献   

18.
The effects of redox state and ligand characteristics on structural, electronic, and reactivity properties of complexes related to the [2Fe](H) subcluster of [Fe]-hydrogenases have been investigated by DFT calculations and compared with experimental and theoretical data obtained investigating both the enzyme and synthetic model complexes. Our results show that Fe(II)Fe(II) species characterized by OH or H(2)O groups terminally coordinated to the iron atom distal to the terminal sulfur ligand (Fe(d)) are less stable than corresponding mu-OH or mu-H(2)O species, suggesting that the latter are destabilized or kinetically inaccessible in the enzyme. In addition, results obtained investigating Fe(I)Fe(I) and Fe(II)Fe(I) complexes show that structure and relative stability of species characterized by a mu-CO group are significantly affected by the electronic properties of the ligands coordinated to the iron atoms. The investigation of reaction pathways for H(2) activation confirms and extends a previous hypothesis indicating that H(2) can be cleaved on Fe(II)Fe(II) species. In particular, even though [Fe]-hydrogenases are proposed to bind and activate H(2) at a single iron center, the comparison of our data with experimental results obtained studying synthetic complexes (Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang, C.-Y.; Darensbourg, M. Y. Inorg. Chem. 2002, 41, 3917) suggests that activation paths involving both metal ions are also possible. Moreover, mu-H Fe(II)Fe(I) complexes are predicted to correspond to stable species and might be formed in the enzyme catalytic cycle.  相似文献   

19.
Pyruvate decarboxylase (PDC) is a typical thiamin diphosphate (ThDP)-dependent enzyme with widespread applications in industry. Though studies regarding the reaction mechanism of PDC have been reported, they are mainly focused on the formation of ThDP ylide and some elementary steps in the catalytic cycle, studies about the whole catalytic cycle of PDC are still not completed. In these previous studies, a major controversy is whether the key active residues (Glu473, Glu50′, Asp27′, His113′, His114′) are protonated or ionized during the reaction. To explore the catalytic mechanism and the role of key residues in the active site, three whole-enzyme models were considered, and the combined QM/MM calculations on the nonoxidative decarboxylation of pyruvate to acetaldehyde catalyzed by PDC were performed. According to our computational results, the fundamental reaction pathways, the complete energy profiles of the whole catalytic cycle, and the specific role of key residues in the common steps were obtained. It is also found that the same residue with different protonation states will lead to different reaction pathways and energy profiles. The mechanism derived from the model in which the residues (Glu473, Glu50′, Asp27′, His113′, His114′) are in their protonated states is most consistent with experimental observations. Therefore, extreme care must be taken when assigning the protonation states in the mechanism study. Because the experimental determination of protonation state is currently difficult, the combined QM/MM method provides an indirect means for determining the active-site protonation state.  相似文献   

20.
The increased interest in sequencing cyanobacterial genomes has allowed the identification of new homologs to both the N-terminal domain (NTD) and C-terminal domain (CTD) of the Orange Carotenoid Protein (OCP). The N-terminal domain homologs are known as Helical Carotenoid Proteins (HCPs). Although some of these paralogs have been reported to act as singlet oxygen quenchers, their distinct functional roles remain unclear. One of these paralogs (HCP2) exclusively binds canthaxanthin (CAN) and its crystal structure has been recently characterized. Its absorption spectrum is significantly red-shifted, in comparison to the protein in solution, due to a dimerization where the two carotenoids are closely placed, favoring an electronic coupling interaction. Both the crystal and solution spectra are red-shifted by more than 50 nm when compared to canthaxanthin in solution. Using molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies of HCP2, we aim to simulate these shifts as well as obtain insight into the environmental and coupling effects of carotenoid–protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号