首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chiral and thermally irreversible photochromic fulgide derivative incorporating an (R)-binaphthol unit in its acid anhydride moiety was used for the photoswitching of the pitch length of cholesteric liquid crystals. Since the absorption maximum wavelengths of both thermally stable photoisomers are nearly in the UV region (quasi-stealth photochromism), it can be exposed to visible light without inducing photochromic reactions. Therefore, when the photoswitching molecule is added to a permanent cholesteric liquid crystal whose reflection light wavelength is in the visible region, the UV light-induced photochromic reaction of the photoswitching molecule changes the wavelength of the reflection light in the visible light region. We have succeeded in regulating the color of cholesteric liquid crystalline cells between red and blue upon UV light irradiation. Attempts to introduce this system in polymer dispersed cholesteric liquid crystals are also described.  相似文献   

2.
Highly accurate excitation spectra are predicted for the low-lying n-π* and π-π* states of uracil for both the gas phase and in water employing the complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT) methods. Implementation of the effective fragment potential (EFP) solvent method with CASSCF and MCQDPT enables the prediction of highly accurate solvated spectra, along with a direct interpretation of solvent shifts in terms of intermolecular interactions between solvent and solute. Solvent shifts of the n-π* and π-π* excited states arise mainly from a change in the electrostatic interaction between solvent and solute upon photoexcitation. Polarization (induction) interactions contribute about 0.1 eV to the solvent-shifted excitation. The blue shift of the n-π* state is found to be 0.43 eV and the red shift of the π-π* state is found to be -0.26 eV. Furthermore, the spectra show that in solution the π-π* state is 0.4 eV lower in energy than the n-π* state.  相似文献   

3.
Two self-assembled monolayer (SAM) films containing the photoswitchable 4-pyridylazophenoxy chromophore have been deposited onto a gold-coated glass substrate. One film contains the chromophore as a single component, 1 SAM, and the other is doped with a nonphotoactive component as a 1:1 mixture, 2 SAM. The reversible photoswitching performances of 1 SAM and 2 SAM via the evanescence field using light of appropriate wavelengths have been investigated by UV spectroscopic and electrochemical monitoring. In principle, the trans-form SAMs present a coordinating surface, the "on" state, that can be switched "off" in the cis form. This has been illustrated by immersing both the as-deposited (trans form) SAMs and the photoswitched (predominantly cis form) SAMs into solutions of cobalt and zinc tetraphenylporphyrin (CoTPP and ZnTPP, respectively) and an octaoctyl-substituted cobalt phthalocyanine. In a further phase of this study, the remote control of binding events at the surface of the SAMs has been demonstrated through evanescent-field-driven photoswitching of trans-form SAMs coordinated at the surfaces with examples of these metallomacrocycles. This photoswitching was undertaken with the constructs immersed in neat toluene, and the macrocycles were released from the surface into the solvent. The release was measured by spectroscopic monitoring of the material remaining on the constructs. The study was extended to develop an in situ release/coordination cycle. Thus, irradiation of a construct of ZnTPP bound to the surface of trans-form 2 SAM using waveguided light at 365 nm releases the macrocycle into a toluene solution of ZnTPP. Further irradiation of the SAM, now in its cis form, with waveguided 439 nm light regenerates the trans form, which recoordinates ZnTPP from the solution. The results demonstrate the potential for using waveguided light to control molecular events within and at the surfaces of SAM constructs.  相似文献   

4.
Coumarin derivatives, one of the organic fluorescent materials, are widely applied in many areas such as laser dyes, organic light emitting diodes (OLED), pharmaceuticals and bio/chemosensors, with the advantages of the large conjugated system and planar structure. In the coumarin analogs, which are polarity sensitive fluorophores, a shift to the red zone is observed in the case of π expansion at 3-positions and electron donor groups at 7-positions. The present article reports the synthesis of novel hybrid compounds ( CD1-CD8 ) containing coumarin and benzodiazepine rings using ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate reagent and 1,2-diaminobenzene derivatives under optimized reaction conditions with PTSA catalyst. The structures of target compounds synthesized were characterized by FTIR, 1HNMR, 13CNMR, HRMS and UV–Vis spectra. The effects of electron withdrawing and electron donor groups in the cyclocondensation reaction that takes place as regioselective were evaluated in detail. The substituent effects were investigated for n-π* and π-π* electronic transitions in UV–Vis Spectroscopy.  相似文献   

5.
Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.  相似文献   

6.
Palladium(II) complexes attract great attention due to their remarkable catalytic and biological activity. In the present study X-ray characterization, UV-Vis and Time-Dependent Density Functional Theory (TD-DFT) calculations for six PdCl(2)(XPy)(2) complexes (where: Py = pyridine; X = H, CH(3) or Cl) were applied in order to investigate substituent effects on their crystal structures and electronic properties and to combine the results with their catalytic and cytotoxic activity. The structures of complexes PdCl(2)(3-MePy)(2), PdCl(2)(4-MePy)(2) and PdCl(2)(2-ClPy)(2), have been described for the first time and we compared our results with available data for the whole series of six complexes. All compounds exhibit a square planar coordination geometry in which the palladium ion coordinates two nitrogen atoms of pyridine ligands and two chlorine atoms in trans positions. For complexes with ortho substituted XPy ligands a cis disposition of substituents takes place, whereas for other ligands: 3-MePy and 3-ClPy--the substituents are in trans positions. For XPy the energies of π-π* and n-π* transitions depend on the position and nature of the X substituent in the XPy ring. After complex formation a hipsochromic shift (24-34 nm) of π-π* and a bathochromic shift of n-π* bands are observed. The UV-Vis spectra of PdCl(2)(XPy)(2) confirm that square planar coordination geometry of complexes I-VI and two dπ-π* transitions are expected. With the help of the TD-DFT calculations we proved that dπ-π* transitions in solutions of PdCl(2)(XPy)(2) complexes result from MLCT (metal-to-ligand charge transfer) with contribution from chlorine atoms to palladium. We also studied substituent effects on cytotoxic properties of Pd(II) complexes against the human breast cancer cell line MCF7, the human prostate cancer cell line PC3, and the human T-cell lymphoblast-like cell line CCRF. The studied complexes were the most active against the CCRF cell line and less or even no cytotoxic effect was observed for PC3 cells. Complexes with MePy ligands showed increased cytotoxic activity compared to unsubstituted pyridine ligands.  相似文献   

7.
It goes both ways: A thiol-reactive cross-linker based on a bridged azobenzene derivative permits photoreversible control of peptide conformation on irradiation with violet (407?nm) and green (500-550?nm) light (see picture) through isomerization of the cross-linker. The large separation of the absorbance bands of the cis (yellow) and trans (red) isomers enables complete bidirectional photoswitching.  相似文献   

8.
Functional photoactive organic-inorganic block copolymers of poly(methylphenylsilane) (PMPS) and disperse red 1 methacrylate (DR1MA) were synthesized in a quartz tube using UV-technique. The synthesized block copolymers were characterized by FTIR, NMR, GPC and thermal analyses and studied for their optical and photoluminescence properties. The weight average and number average molecular weights of such a synthesized block copolymer are 2.47 × 103 and 2.27 × 103, respectively. The appearance of two glass transition temperatures indicated the synthesized polymers as block copolymers. The functional organic-inorganic block copolymers exhibited optical absorbance at 276 nm due to aromatic ring associated with both the blocks and at 325 nm due to σ-electron delocalization of Si-Si chain of PMPS block. Also, the optical absorbance appeared at 472 nm is due to combining the contribution of n-π* and first π-π* charge transfer electronic transition of the azobenzene chromophore of DR1MA unit. Two photoemissions were observed at 307 nm and 415 nm when such a polymer was excited at 275 nm. The photoluminescence was also observed at 415 nm when excited by 325 nm. The multi-emission spectra appeared between 510 nm to 580 nm are presumed to be due to exciton coupling between azobenzene chromophore of DR1MA and and Si-Si σ-conjugation of PMPS block. The synthesized copolymers are thermally stable up to 260°C. Such functional photoactive block copolymers may find novel optoelectronic application.  相似文献   

9.
Norikane Y  Tamaoki N 《Organic letters》2004,6(15):2595-2598
[reaction: see text] A new class of molecular machine exhibits a hingelike motion upon photoirradiation. The motion (close and open) can be operated by alternate irradiation with UV and visible light. The trans/trans and cis/cis isomers are thermally stable at 40 degrees C, and the photochemical closure reaction (from trans/trans to cis/cis isomer) is dependent on the intensity of the light used because of the short-lived intermediate (trans/cis isomer).  相似文献   

10.
[structure: see text] The synthesis of the multistate photochromic switch 3 is described. This switch contains three dihydropyrene (DHP) units in the most conjugated fully closed form 3-c,c,c. The thermally stable form has the central DHP unit open and is 3-c,o,c. NMR and laser flash photolysis experiments were used to characterize the multiple states in the photoswitching of 3 by visible and UV light. Three of the possible five isomeric states of 3-c,o,c were observed. Irradiation of 3-c,o,c by visible light led to the formation of 3-o,o,o via the isomer 3-c,o,o as an intermediate, which were observed by NMR. Irradiation by UV light led to the formation of 3-c,c,c, which decays with a lifetime of 7.5 ms.  相似文献   

11.
Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and (1)H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the π-π* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-π* transition was detected in some complexes.  相似文献   

12.
The lability of the [UO2(acac)2H2O] complex has been exploited to decipher solvent composition of a medium. Successive blue shift of the π-π* band (λmax=282 nm) is observed due to alcohol substitution of increasing chain length in place of water. This observation helps to quantify the chain lengths of normal alcohol. The result has been accounted theoretically. However, in non-coordinating solvent, irregular red shift of the π-π* band is observed because of the molecular complexity. Again, charge transfer (CT) band at 211 nm has been identified employing polar-polar and polar coordinating-non-coordinating solvent systems.  相似文献   

13.
Two bands make light work: since the isomerization of azobenzenes is usually induced by UV light, its application is limited in living systems. A new azobenzene switch now operates entirely in the visible range. The new design is based on the introduction of OMe groups in the ortho positions, which splits the n-π* transition into two absorption bands. The two isomeric forms can be obtained with more than 80 % enrichment from the respective photostationary state.  相似文献   

14.
以cis-1,2-二氰基乙烯-1,2-二硫醇钠(Na2(mnt))、2,2′-联吡啶-1,1′-二氧化物(bipyO2)和NiCl2为原料,合成了一种具有大共轭体系的混配型配合物.用元素分析、差热 热重分析、摩尔电导、红外和紫外光谱对配合物进行表征.该配合物化学式为Ni(mnt)(bipyO2),平面正方形结构,属电中性物质,热分解温度高于335 ℃.不溶于水和常规有机溶剂,可溶于DMSO.该配合物是一种氨敏材料,用它制作的传感器对氨气具有良好的敏感性和选择性;当工作电压为10 V时,在氨气浓度小于2.6 mmol•L-1的范围,传感器的输出信号对氨气呈线性响应.传感器的平均回收率为100.2%,响应时间为20 s,恢复时间为45 s.可用于微量氨的定量分析.  相似文献   

15.
Abstract

We report the synthesis and characterization of multifunctional polysilane copolymers containing chiral and azobenzene chromophore as a pendant group. Multifunctional polymers of poly(methylphenylsilane) (PMPS) with (R)-N-(1-phenylethyl)methacrylamide (R-NPEMAM) and disperse red 1 methacrylate (DR1MA) were synthesized in a quartz tube using UV-technique. The molecular weights of such synthesized copolymers were found to be in the order of 103. The appearance of two glass transition temperatures in DSC indicated that the synthesized copolymers are block copolymers. The electronic absorbance of synthesized polymers was observed at 272?nm (π-π* transition of aromatic ring), 330?nm (σ-σ* transition of Si-Si chain of PMPS) and 475?nm (n-π* with π-π* transition due to azobenzene chromophore of DR1MA unit). The chirality of the synthesized polymer was confirmed through circular dichroism observed at 261?nm. Induced chirality appeared at 330?nm and 470?nm due to the association of the Si-Si chain of PMPS and the presence of azobenzene chromophore of the DR1MA unit respectively. The photoluminescence (PL) properties of the synthesized copolymers (SCDRDM-1B, SCDRDM-2B, and SCDRDM-3B) were observed at 307?nm and 415?nm when excited at 275?nm. The λem was also observed at 415?nm when excited by 325?nm. The multi-emission spectra appeared at 500?nm, 550 and 590?nm are presumed to be due to exciton coupling between azobenzene chromophore of DR1MA, and Si-Si σ-conjugation in association with the aromatic ring of PMPS and chiral unit R-NPEMAM block.  相似文献   

16.
Abstract— Trans-urocanic acid (UCA) is found in the upper layer of the skin and UV irradiation induces its photoisomerization to cis -UCA. Cis -UCA mimics some of the immunosuppressive properties of UV exposure. The wavelength dependence for in vitro photoisomerization of trans-UCA (15 μM) over the spectral range 250 nm-340 nm (10 nm intervals) was determined. The action spectrum revealed that maximal cis-UCA production occurred at 280 nm, which is red-shifted by 10-12 nm from its absorption peak at 268 nm and differs markedly from the reported action spectra for cis-UCA production in mouse skin in vivo , which peaks at 300-310 nm. The reasons for the red shift between the in vitro and in vivo action spectra are not clear. There is limited evidence suggesting that the UV absorption maximum of trans- UCA red shifts from 268 nm in vitro to 310 nm on interaction with stratum corneum proteins in vivo. This phenomenon was investigated by applying trans-UCA (2.5 mg/cm2) in an oil emulsion to isolated human stratum corneum. After incubation at 37°C for 1 h, the absorption spectra of stratum corneum with UCA and with oil only were compared using a Xe arc source and a spectrora-diometer. A moderate red shift in trans-UCA absorption from ∼268 nm to 280 nm was observed. In summary, we suggest that the 10-12 nm red shift between the UCA absorption spectrum peak and the action spectrum peak in vitro may be accounted for by the wavelength dependence of quantum yields reported over the 254-313 nm range. The red shift between the in vitro and in vivo photoisomerization action spectra may result from the 10 to 12 nm red shift in the absorption of UCA in association with stratum corneum proteins, combined with increasing quantum yields over the 254-313 nm range.  相似文献   

17.
The n-π* electronic transition in polymeric carbon nitride(PCN)can remarkably harvest visible light,which thus potentially promotes the photocatalytic hydrogen H2 generation.However,awaking the n-π* lectronic transition has proven to be a grand challenge.Herein,we reported on the awakening of n-π* electronic transition by microwave thermolysis of urea pellet,which yielded the PCN with absorption edge of 600 nm,near 140 nm red-shift from 460 nm of pristine PCN.The n-π* electronic transition endows PCN with an increased photocata lytic H2 generation,with a highest H2 rate of 61.7μmol h-1 under visible light exposure,which is near 6 times higher than that by using the PCN from the thermolysis of urea pellets in an electric furnace(10.6μmol h-1).Furthermore,the n-π* transition in PCN leads to the longest wavelength of 535 nm that can initiate H2 generation,remarkably longer than the absorption edge of pristine PCN(460 nm).This work manifests the advantages of microwave sintering route to awaken the n-π* electronic transition in PCN for an increased photocata lytic performance.  相似文献   

18.
The poly(2-chloroaniline) was prepared by in situ chemical oxidative polymerization method using ammonium thiosulphate as an oxidant and methanesulfonic acid as a dopant. The optical absorption spectra showed bands for π-π* transition of the benzenoid ring at 265 nm and at 350 nm for n-π* transition of the quinonoid ring. The broad band appeared around 550 nm was due to transition of electrons from the valance band to the conduction band, this also confirmed the good electrical conductivity of the polymer. The X-ray diffraction pattern showed characteristic diffraction peak at 2θ = 26° confirming a emeraldine salt form of the poly(2-chloroaniline). The electrical conductivity of the polymer measured by the two probe method at room temperature was 2.21×10?3 S/cm, which was found to be thermally activated. The linear increase in conductivity with increase in the temperature suggested the electron hopping mechanism. The methanesulfonic acid doped poly(2-chloroaniline) presents a linear dependency of its electrical resistance with an increase in ammonia gas concentration (1 ppm to 300 ppm) and creates a promising sensing material for ammonia gas sensing applications.  相似文献   

19.
本文设计合成了两种二氰基乙烯基并三噻吩化合物,即2-二氰基乙烯基二噻吩并[3,2-b:2’,3-’d]噻吩(DCTT)与2-二氰基乙烯基二噻吩并[2,3-b:3’,2-’d]噻吩(DCST).研究了介质极性对吸收与发射光谱行为的影响,考察了化合物的分子结构与其发光能力的关系.溶剂效应显示化合物DCST随介质的极性增加,分子内电荷转移态(ICT)的荧光发射峰位红移现象更为明显,展示出较大的Stokes位移.化合物DCTT随介质的极性增加,发光行为表现出负的溶致变色效应,与"能级邻近效应"有关.溶剂效应说明了DCTT分子中并三噻吩部分给出电子的能力较弱,而DCST分子中的并三噻吩部分给出电子的能力较强,是导致二者ICT态的发光能力的差异的主要原因.  相似文献   

20.
A rationally designed, pyrene-spiropyran hybrid Ca2+ sensor (Py-1) with enhanced fluorescence intensity compared to a standalone spiropyran analogue is presented. Importantly, Py-1 retains the characteristic red emission profile of the spiropyran, while fibre-based photostability studies show the sensor is stable after multiple cycles of photoswitching, without any sign of photodegradation. Such properties are of real advantage for cell-based sensing applications. An interesting observation is that, Py-1 presents with two excitation options; direct green excitation (532 nm) of the photoswitch for a red emission, and UV excitation (344 nm) of the component pyrene, which gives rise to distinct blue and red emissions. This proof-of-concept hybrid sensing system presents as a more general approach to brighter spiropyran-based sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号