首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This Concept article provides an elementary discussion of a special class of large‐sized gold compounds, so‐called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few‐atom complexes, <1 nm) and face‐centered cubic (fcc) crystalline Au nanoparticles (typically >2 nm). The discussion is focused on the relationship between them, including the evolution from the Au???Au aurophilic interaction in AuI complexes to the direct Au? Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non‐fcc structures in nanoclusters. Thiolate‐protected Aun(SR)m nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.  相似文献   

2.
A new synthetic strategy was devised leading to the formation of complexes, such as [Au(IPr)(CH2COCH3)]. The approach capitalizes on the formation of a decomposition product observed in the course of the synthesis of [Au(IPr)(Cl)]. A library of gold acetonyl complexes containing the most common N‐heterocyclic carbene (NHC) ligands has been synthesized. These acetonyl complexes are good synthons for the preparation of numerous organogold complexes. Moreover, they have proven to be precatalysts in common gold(I)‐catalyzed reactions.  相似文献   

3.
The synthesis of two organogold(I) complexes, [(Au(NCN))2(dppbp)] (6) and [(Au(Phebox))2(dppbp)] (9), and their application in subsequent transmetalating reactions are described. A trinuclear organogold(I) complex, [(AuCl)3(tdpppb)] (4) is also reported, which exhibits a surprisingly high solubility in dichloromethane. It was found that 6 and 9 can cleanly transfer the anionic NCN-([C(6)H(3)(CH(2)NMe(2))2-2,6]-) or Phebox-([2,6-bis(oxazolinyl)phenyl]-) moiety to Ti(IV) and Pd(II) centers, respectively. The coproduct [(AuCl)2(dppbp)] (3, dppbp is [4-Ph(2)PC(6)H(4)]2 (1)) formed during this transmetalation reaction, precipitates almost quantitatively from the reaction mixture (toluene) and can thus be separated by simple filtration. In comparison, [AuCl(PPh3)], formed as the coproduct in the transmetalation reaction of [Au(NCN)(PPh3)] with metal salts, has a higher solubility in apolar solvents and thus is more difficult to separate from the resultant organometallic complex. Digold complex 6 has been characterized by NMR spectroscopy and crystallographic analyses. These analyses show that the two gold units are essentially independent. The formation of a dimetallic transmetalating agent based on gold(I) had no effect on its transmetalating properties.  相似文献   

4.
The method of radial distribution functions (RDF) of atoms obtained from powder X-ray diffraction patterns has been applied to the determination of the molecular structure of a number of polynuclear organogold derivatives in the form of amorphous powders. The distances between Au atoms producing the strongest peaks on RDF have been measured directly. The modes of addition of (AuPPh3)+ cation to aurated phenylacetylene, acetonitrile and diaurated malonitrile and the presence of binuclear groupings (AuPPh3)2 with a direct AuAu bond, connected with cyclopentadienyl rings in tetragold derivatives of ferrocene, have been found.  相似文献   

5.
A new derivative of cellulose aerogel was prepared via functionalization of cellulose with dimercaprol. Dimercaprol, as a chelating agent of Au(III), was applied for the loading of Au(III) on cellulose aerogel. The new organogold compound after characterization was used as an efficient heterogeneous catalyst in the oxidation reactions of aliphatic alcohols, benzyl alcohol, and ethylbenzene. Excellent selectivities and good conversions were obtained in the green oxidation reactions of alcohols and ethylbenzene. The high porosity of cellulose aerogel led to the good conversions with the low catalyst amounts. The significance of the presented work is the introducing of an environmentally benign process for the oxidation reactions based on a biocompatible catalyst.  相似文献   

6.
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4’-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.  相似文献   

7.
Small gold clusters (approximately 1 nm) protected by molecules of a tripeptide, glutathione (GSH), were prepared by reductive decomposition of Au(I)-SG polymers at a low temperature and separated into a number of fractions by polyacrylamide gel electrophoresis (PAGE). Chemical compositions of the fractionated clusters determined previously by electrospray ionization (ESI) mass spectrometry (Negishi, Y. et al. J.Am. Chem. Soc. 2004, 126, 6518) were reassessed by taking advantage of freshly prepared samples, higher mass resolution, and more accurate mass calibration; the nine smallest components are reassigned to Au10(SG)10, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au25(SG)18, Au29(SG)20, Au33(SG)22, and Au39(SG)24. These assignments were further confirmed by measuring the mass spectra of the isolated Au:S(h-G) clusters, where h-GSH is a homoglutathione. It is proposed that a series of the isolated Au:SG clusters corresponds to kinetically trapped intermediates of the growing Au cores. The relative abundance of the isolated clusters was correlated well with the thermodynamic stabilities against unimolecular decomposition. The electronic structures of the isolated Au:SG clusters were probed by X-ray photoelectron spectroscopy (XPS) and optical spectroscopy. The Au(4f) XPS spectra illustrate substantial electron donation from the gold cores to the GS ligands in the Au:SG clusters. The optical absorption and photoluminescence spectra indicate that the electronic structures of the Au:SG clusters are well quantized; embryos of the sp band of the bulk gold evolve remarkably depending on the number of the gold atoms and GS ligands. The comparison of these spectral data with those of sodium Au(I) thiomalate and 1.8 nm Au:SG nanocrystals (NCs) reveals that the subnanometer-sized Au clusters thiolated constitute a distinct class of binary system which lies between the Au(I)-thiolate complexes and thiolate-protected Au NCs.  相似文献   

8.
采用基于密度泛函理论(DFT)的Dmol3程序系统研究了O原子与O2在 Au19与Au20团簇上的吸附反应行为. 结果表明: O在Au19团簇顶端洞位上的吸附较Au20强; 在侧桥位吸附强度相近. O与O2在带负电Au团簇上吸附较强, 在正电团簇吸附较弱. 从O―O键长看, 当金团簇带负电时, O―O键长较长, 中性团簇次之, 正电团簇中O―O键长较短, 因而O2活化程度依次减弱. 电荷布居分析表明, Au团簇带负电时, O与O2得电子数较中性团簇多, 而团簇带正电时, 得电子数较少. 差分电荷密度(CDD)表明, O2与Au团簇作用时, 金团簇失电子, O2的π*轨道得电子, 使O―O键活化. O2在Au19-团簇上解离反应活化能为1.33 eV, 较中性团簇低0.53 eV; 而在Au19+上活化能为2.27 eV, 较中性团簇高0.41 eV, 这与O2在不同电性Au19团簇O―O键活化规律相一致.  相似文献   

9.
聚(N-乙烯基-2-吡咯烷酮)稳定的金簇合物(Au:PVP)的质谱结果表明,来源于合成前驱体的Cl吸附质主要存在于Au34和Au43簇合物上。金簇合物上Cl吸附质的数量不影响其催化有氧苯甲醇氧化性能,表明Cl原子与Au簇合物间存在较弱的键合作用。相反,用Br替代Au34和Au43簇合物上Cl显著抑制了其催化活性,但对其电子结构没有任何影响。这表明, Br原子与金簇合物的键合较强,在空间上堵塞了活性位。因Br吸附质而导致活性显著下降表明, Au34和Au43簇合物对Au:PVP催化活性起主要贡献。  相似文献   

10.
Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.  相似文献   

11.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

12.
We performed a global-minimum search for low-lying neutral clusters (Au(n)) in the size range of n=15-19 by means of basin-hopping method coupled with density functional theory calculation. Leading candidates for the lowest-energy clusters are identified, including four for Au(15), two for Au(16), three for Au(17), five for Au(18), and one for Au(19). For Au(15) and Au(16) we find that the shell-like flat-cage structures dominate the population of low-lying clusters, while for Au(17) and Au(18) spherical-like hollow-cage structures dominate the low-lying population. The transition from flat-cage to hollow-cage structure is at Au(17) for neutral gold clusters, in contrast to the anion counterparts for which the structural transition is at Au(16) (-) [S. Bulusu et al., Proc. Natl. Acad. Sci. U.S.A. 103, 8362 (2006)]. Moreover, the structural transition from hollow-cage to pyramidal structure occurs at Au(19). The lowest-energy hollow-cage structure of Au(17) (with C(2v) point-group symmetry) shows distinct stability, either in neutral or in anionic form. The distinct stability of the hollow-cage Au(17) calls for the possibility of synthesizing highly stable core/shell bimetallic clusters M@Au(17) (M=group I metal elements).  相似文献   

13.
The structural and electronic properties of Au(m)Ag(n) binary clusters (2 < or = m + n < or = 8) have been investigated by density functional theory with relativistic effective core potentials. The results indicate that Au atoms tend to occupy the surface of Au(m)Ag(n) clusters (n > or = 2 and m > or = 2). As a result, segregation of small or big bimetallic clusters can be explained according to the atomic mass. The binding energies of the most stable Au(m)Ag(n) clusters increase with increasing m+n. The vertical ionization potentials of the most stable Au(m)Ag(n) clusters show odd-even oscillations with changing m+n. The possible dissociation channels of the clusters considered are also discussed.  相似文献   

14.
During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultrasmall Au clusters AuN (N < 12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 (Ph = phenyl) and a bidentate phosphine ligand P(Ph)2(CH2)(M)P(Ph)2 are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high-resolution mass spectrometry and UV-vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M of the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)(M)P(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.  相似文献   

15.
Phosphine-stabilized Au11 clusters in chloroform were reacted with glutathione (GSH) in water under a nitrogen atmosphere. The resulting Au:SG clusters exhibit an optical absorption spectrum similar to that of Au25(SG)18, which was isolated as one of the major products from chemically prepared Au:SG clusters (Negishi, Y. et al. J. Am. Chem. Soc. 2005, 127, 5261). Rigorous characterization by optical spectroscopy, electrospray ionization mass spectrometry, and polyacrylamide gel electrophoresis confirms that the Au25(SG)18 clusters were selectively obtained on the sub-100 mg scale by ligand exchange reaction under aerobic conditions. The ligand exchange strategy offers a practical and convenient method of synthesizing thiolated Au25 clusters on a large scale.  相似文献   

16.
A systematic study of bimetallic Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters is performed by using density functional theory at the B3LYP level. The geometric structures, relative stabilities, HOMO-LUMO gaps, natural charges and electronic magnetic moments of these clusters are investigated, and compared with pure gold clusters. The results indicate that the properties of Au(n)M(2) clusters for n = 1-3 diverge more from pure gold clusters, while those for n = 4-6 show good agreement with Au(n) clusters. The dissociation energies, the second-order difference of energies, and HOMO-LUMO energy gaps, exhibiting an odd-even alternation, indicate that the Au(4)M(2) clusters are the most stable structures for Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters. Moreover, we predict that the average atomic binding energies of these clusters should tend to a limit in the range 1.56-2.00 eV.  相似文献   

17.
We report on the first synthesis of alkanethiolate-protected Au55 (11 kDa), which has been a "missing" counterpart of Schmid's Au55(PR3)12Cl6. Au:SCx clusters (x = 12, 18) were prepared by the reaction of alkanethiol (CxSH) with polymer-stabilized Au clusters ( approximately 1.3 nm) and subsequently incubated in neat CxSH. The resulting clusters were successfully fractionated by recycling gel permeation chromatography into Au approximately 38:SCx and Au approximately 55:SCx and identified by laser-desorption ionization mass spectrometry. The Au approximately 55:SCx clusters exhibited structured optical spectra, suggesting molecular-like properties. The thiolate monolayers were found to be liquid-like on the basis of the IR spectrum and the monolayer thickness, which was estimated from the hydrodynamic diameter.  相似文献   

18.
A systematic quantum chemical investigation on the electronic, geometric and energetic properties of Au(n)V clusters with n = 1-14 in both neutral and anionic states is performed using BP86/cc-pVTZ-PP calculations. Most clusters having an even number of electrons prefer a high spin state. For odd-electron systems, a quartet state is consistently favoured as the ground state up to Au(8)V. The larger sized Au(10)V, Au(12)V and Au(14)V prefer a doublet state. The clusters prefer 2D geometries up to Au(8)V involving a weak charge transfer. The larger systems bear 3D conformations with a more effective electron transfer from Au to V. The lowest-energy structure of a size Au(n)V is built upon the most stable form of Au(n-1)V. During the growth, V is endohedrally doped in order to maximize its coordination numbers and augment the charge transfer. Energetic properties, including the binding energies, embedding energies and second-order energy differences, show that the presence of a V atom enhances considerably the thermodynamic stability of odd-numbered gold clusters but reduces that of even-numbered systems. The atomic shape has an apparently more important effect on the clusters stability than the electronic structure. Especially, if both atomic shape and electronic condition are satisfied, the resulting cluster becomes particularly stable such as the anion Au(12)V(-), which can thus combine with the cation Au(+) to form a superatomic molecule of the type [Au(12)V]Au. Numerous lower-lying electronic states of these clusters are very close in energy, in such a way that DFT computations cannot clearly establish their ground electronic states. Calculated results demonstrate the existence of structural isomers with comparable energy content for several species including Au(9)V, Au(10)V, Au(13)V and Au(14)V.  相似文献   

19.
The synthesis and electrochemical and spectroscopic characterization of biicosahedral Au(25) clusters with a composition of [Au(25)(PPh(3))(10)(thiolate)(5)Cl(2)](2+) are described. The biicosahedral Au(25) clusters protected with various types of thiol ligands including alkanethiols, 2-phenylethanethiol, 11-mercaptoundecanoic acid, and 11-mercapto-1-undecanol were synthesized in high yields using a one-step, one-phase procedure in which Au(PPh(3))Cl is reduced with tert-butylamine-borane in the presence of the thiol ligand in a 3:1 v/v chloroform/ethanol solution. All biicosahedral Au(25) clusters prepared exhibit characteristic optical absorption and photoluminescence properties. The emission energy is found to be substantially smaller than the optical absorption energy gap of 1.82 eV, indicating a subgap energy luminescence. The electrochemical HOMO-LUMO gap (~1.54 eV) of the clusters is also substantially smaller than the optical absorption energy gap but rather similar to the emission energy. These electrochemical and optical properties of the biicosahedral Au(25) clusters are distinctly different from those of the Au(25)(thiolate)(18) clusters.  相似文献   

20.
The change in the electronic structure of Au(n)- clusters induced by the exchange of an Au atom by hydrogen is studied using photoelectron spectroscopy. Au anion clusters react with one hydrogen atom but not with molecular hydrogen. The spectra of Au(n)- and Au(n-1)H- clusters show almost identical features for n > 2 suggesting that hydrogen behaves as a protonated species by contributing one electron to the valence pool of the Au(n)- cluster. This behavior is in sharp contrast to that of the commonly understood electronic structure of hydrogen in metals; namely, it attracts an electron from the conduction band of the metal and remains in an "anionic" form or forms covalent bonding. We discuss the influence of the unique electronic structure of H on the unusual catalytic behavior of Au clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号