首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

2.
Let Ω be a bounded, smooth domain in ${\mathbb{R}^2}$ . We consider the functional $$I(u) = \int_\Omega e^{u^2}\,dx$$ in the supercritical Trudinger-Moser regime, i.e. for ${\int_\Omega |\nabla u|^2dx > 4\pi}$ . More precisely, we are looking for critical points of I(u) in the class of functions ${u \in H_0^1 (\Omega )}$ such that ${\int_\Omega |\nabla u|^2 \, dx = 4\, \pi \, k\, (1+\alpha)}$ , for small α > 0. In particular, we prove the existence of 1-peak critical points of I(u) with ${\int_\Omega |\nabla u|^2dx = 4\pi(1 + \alpha)}$ for any bounded domain Ω, 2-peak critical points with ${\int_\Omega |\nabla u|^2dx = 8\pi(1 + \alpha)}$ for non-simply connected domains Ω, and k-peak critical points with ${\int_\Omega |\nabla u|^2 dx = 4k \pi(1 + \alpha)}$ if Ω is an annulus.  相似文献   

3.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

4.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

5.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

6.
In this paper, we consider the nonlocal problem of the form ut-Δu = (λe-u)/(∫Ωe-udx)2,x ∈Ω, t0 and the associated nonlocal stationary problem -Δv = (λe-v)/(∫Ωe-vdx)2, x ∈Ω,where λ is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problemhas a unique solution if and only if λ 2| Ω| 2 , and for λ = 2|Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t →∞.  相似文献   

7.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

8.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

9.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

10.
Let KL 1(?) and let fL (?) be two functions on ?. The convolution $$ \left( {K*F} \right)\left( x \right) = \int_\mathbb{R} {K\left( {x - y} \right)f\left( y \right)dy} $$ can be considered as an average of f with weight defined by K. Wiener’s Tauberian theorem says that under suitable conditions, if $$ \mathop {\lim }\limits_{x \to \infty } \left( {K*F} \right)\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \int_\mathbb{R} {\left( {K*A} \right)\left( x \right)} $$ for some constant A, then $$ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = A $$ We prove the following ?-adic analogue of this theorem: Suppose K, F, G are perverse ?-adic sheaves on the affine line $ \mathbb{A} $ over an algebraically closed field of characteristic p (p ≠ ?). Under suitable conditions, if $ \left( {K*F} \right)|_{\eta _\infty } \cong \left( {K*G} \right)|_{\eta _\infty } $ , then $ F|_{\eta _\infty } \cong G|_{\eta _\infty } $ , where η is the spectrum of the local field of $ \mathbb{A} $ at .  相似文献   

11.
We study regularity results for solutions uHW 1,p (Ω) to the obstacle problem $$\int_\Omega \mathcal{A} \left( {x,\nabla _{\mathbb{H}^u } } \right)\nabla _\mathbb{H} \left( {v - u} \right)dx \geqslant 0 \forall v \in \mathcal{K}_{\psi ,u} \left( \Omega \right)$$ such that u ? ψ a.e. in Ω, where $xxx$ , in Heisenberg groups ? n . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$\begin{gathered} T\psi \in HW_{loc}^{1,p} \left( \Omega \right) \Rightarrow Tu \in L_{loc}^p \left( \Omega \right), \hfill \\ \left| {\nabla _{\mathbb{H}\psi } } \right|^p \in L_{loc}^q \left( \Omega \right) \Rightarrow \left| {\nabla _{\mathbb{H}^u } } \right|^p \in L_{loc}^q \left( \Omega \right), \hfill \\ \end{gathered}$$ where 2 < p < 4, q > 1.  相似文献   

12.
In this paper, the two-dimensional Marcinkewicz integral introduced by Stein μ(f)(x)=(∫_0~x|∫_(|x-y|≤1) _(|x-y|)~(Ω(x-y))f(y)dy|~2t~(-3)dt)~2is shown to be of weak type (1,1) and weighted weak type (1,1) with respect to power weight |x|~" if- 1< α< 0, where Ω is homogeneous of degree 0. has mean value 0 and belongs to Llog~+L(S~1).  相似文献   

13.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

14.
In this paper, we obtain bounds for the decay rate in the L r (? d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, $$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$ . We consider a kernel of the form K(x, y) = ψ(y?a(x)) + ψ(x?a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form $$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$ . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ? d : $$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$ Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  相似文献   

15.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

16.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

17.
We prove higher integrability and differentiability results for local minimizers u: ${\mathbb {R}^2\supset\Omega\to\mathbb {R}^M}$ , M ≥ 1, of the splitting-type energy ${\int_{\Omega}[h_1(|\partial_1 u|)+h_2(|\partial_2 u|)]\,{\rm d}x}$ . Here h 1, h 2 are rather general N-functions and no relation between h 1 and h 2 is required. The methods also apply to local minimizers u: ${\mathbb {R}^2\supset\Omega \to \mathbb {R}^2}$ of the functional ${\int_{\Omega}[h_1(|{\rm div}\,{\rm u}|)+h_2(|\varepsilon^D(u)|)]\,{\rm d}x}$ so that we can include some variants of so-called nonlinear Hencky-materials. Further extensions concern non-autonomous problems.  相似文献   

18.
Let ?? be an open subset of R d and ${ K=-\sum^d_{i,j=1}\partial_i\,c_{ij}\,\partial_j+\sum^d_{i=1}c_i\partial_i+c_0}$ a second-order partial differential operator with real-valued coefficients ${c_{ij}=c_{ji}\in W^{1,\infty}_{\rm loc}(\Omega),c_i,c_0\in L_{\infty,{\rm loc}}(\Omega)}$ satisfying the strict ellipticity condition ${C=(c_{ij}) >0 }$ . Further let ${H=-\sum^d_{i,j=1} \partial_i\,c_{ij}\,\partial_j}$ denote the principal part of K. Assuming an accretivity condition ${C\geq \kappa (c\otimes c^{\,T})}$ with ${\kappa >0 }$ , an invariance condition ${(1\!\!1_\Omega, K\varphi)=0}$ and a growth condition which allows ${\|C(x)\|\sim |x|^2\log |x|}$ as |x| ?? ?? we prove that K is L 1-unique if and only if H is L 1-unique or Markov unique.  相似文献   

19.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

20.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号