首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— In 1, 1, 2-trichlorotrifluoroethane solution biliverdin physically quenches singlet oxygen at a rate of 8 × l0sM-1s-1 and reacts chemically at 6 × 10 5M-1s-1 to give a red product. In D, O solution the rate constants are PD dependent and range from 1.5–6 times 1010M-1s-1 for quenching and the chemical rate varies from 3–5 × 108 M-1 s-1 to give colorless products.  相似文献   

2.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

3.
Abstract— N, N, N' N'-Tetramethylbenzidine (NTMB) photosensitizes the cis-trans isomerization of stilbene oxiranes (SO) and the extrusion of SO2 from dibenzyl sulfone (DBS). In acetonitrile solution it is found that in the absence of SO or DBS, singlet NTMB undergoes three processes: intersystem crossing to triplet NTMB (φISC= 0.63, k ISC= 6.3 × 107s-1), fluorescence (φf= 0.30, k f= 3 × 107s-1), and formation of a cation by electron ejection (φion= 0.09). Both singlet and triplet sensitization are observed. A charge transfer or reversible electron transfer mechanism is proposed to explain the results.  相似文献   

4.
Abstract— The chemical reactions of amino acids with singlet oxygen have been measured in D2O solution where the singlet oxygen was generated directly by irradiation of the oxygen 3g-1δg+ lv electronic transaction with the 1.06 μm output of an Nd-Yag laser. Chemical reaction was measured as amino acid loss by an amino acid analyzer or by fluorescence in the cases of tryptophan and tyrosine.
The chemical rate constants, in units of 107 M -1s-1, are histidine 10, tryptophan 3, methionine 1.7, tyrosine 0.8 and alanine 0.2, In the cases of histidine, methionine and alanine the interaction appears to be entirely chemical, i.e. there is no evidence for physical quenching in addition to the chemical reaction. The histidine chemical reaction rate constant shows an increase with pD with a p K of 6.9.  相似文献   

5.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

6.
Abstract— The addition of FMNH2 to Vibrio harveyi luciferase at 2°C in the presence of tetradecanal results in the formation of a highly fluorescent transient species with a spectral distribution indistinguishable from that of the bioluminescence. The bioluminescence reaches maximum intensity in 1.5 s and decays in a complex manner with exponential components of 10-1s-1, 7 × 10-3s-1, and 7 × 10 4s-1. The fluorescent transient rises exponentially at 7 × 10-2s-3 and decays at 3 × 10-4s-1. The slowest bioluminescence component, comprising the bulk of the bioluminescence, decays at twice the rate of the fluorescent transient under all variations of reaction conditions: concentration of reactants, temperature 2–20°C, and aldehyde chain length—decanal, dodecanal and tetradecanal. The activation energy for both the slowest bioluminescence decay and the transient fluorescence decay is 80 kJ-mol-1. An energy transfer scheme is proposed to explain the results where two distinct chemically energized species utilize the fluorescent transient as emitter for the slower bioluminescences, and for the faster process a fluorophore present in the protein preparation. Kinetic observations suggest that typical preparations of V. harveyi luciferase comprise 15% active protein.  相似文献   

7.
Abstract— Singlet oxygen has been generated directly in 1,1,2-trichloro, 1,2,2-trifluoroethane solution by irradiation of the oxygen dimol 23∑-g→21δg transition with a pulsed dye laser and the 3g-1δg+ lv transition with a continuous Nd-YAG laser. The rates of chemical reaction and physical quenching of singlet oxygen so generated has been measured for a series of substituted oxodipyrro-methenes. The results show that the oxodipyrromethenes react with singlet oxygen at rates comparable to that for 1,3-diphenylisobenzofuran. The rate of quenching of singlet oxygen by ground state oxygen has been measured to be 2.5±0.3 × 103 M-l s-1.  相似文献   

8.
Abstract— The kinetics of photooxidation of triplets of metalloporphyrin compounds to their corresponding radical cations was investigated. Zn-tetraphenyl porphyrin (ZnTPP) and Mg-tetraphenylpor-phyrin (MgTPP) triplets were oxidized by europium salt with rate constants of 4.8 × 105M-1s-1 and 2.1 × 106M-1s-1, respectively. The high rate constant of oxidation of MgTPP triplet might be related to the ground state oxidation potential, being 0.54 V (SCE) for the Mg complex and 0.71 (SCE) for the Zn complex.
The rate constant of oxidation of ZnTPP excited singlet is in the order of diffusion control, i.e. ˜ 1010M -1 s-1. Excitation of ferric, cupric, cobaltic, and vanadyl tetraphenylporphyrin did not result in a long-lived triplet state that would allow oxidation studies using flash photolysis.  相似文献   

9.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

10.
Abstract— On unsensitized photooxygenation magnesium meso -tetraphenylporphyrin underwent oxidative ring cleavage yielding a bilitriene derivative as the sole product. Kinetic studies by quenching technique using singlet-oxygen quenchers, ß-carotene and α-tocopherol, and by substrate direct disappearance technique (Foote and Ching) indicated that only singlet-oxygen process is involved in the photooxygenation, and that the rate of total consumption of singlet oxygen ( k Q+ k R) is 1.0 ± 0.4 times 108 M -1s-1.  相似文献   

11.
Abstract— Experiments on the photooxidation of N -allylthiourea, thiourea, and N-allylurea sensitized by the dye phenosafranine show that in N -allylthiourea the thiourea group is the site of singlet oxygen attack, while the allyl moiety neither reacts with nor quenches this metastable form of O2 (in neutral aqueous solutions). Low concentrations of N-3 (a known quencher of singlet oxygen) strongly reduce the photooxidation of allylthiourea by a mechanism which apparently obeys simple competition kinetics. From these results the rate constant of the reaction between allylthiourea and singlet oxygen is obtained ( k = 4 × 106 M -1 s-1; pH = 7.1).  相似文献   

12.
Abstract—Reaction rate constants for the reaction of singlet oxygen with a series of 24 sulfides in chloroform have been measured by inhibition of the self-sensitized photooxidation of rubrene. The reaction rate constant is sensitive to steric effects, decreasing as the carbons α- to sulfur become more highly substituted. Addition of a methyl group to each of the carbons α- to sulfur decreases the rate constant by about a factor of 10. From a series of p - and m -substituted thioanisoles, a ρ of -1.67 ± 0.09 was found. A much better correlation was found with σ than with σ+ indicating there is no resonance interaction with the reaction center. Typical rate constants are: di- n -butyl sulfide, 2.3 × 107 M -1 s-1; CBZ-L-methionine methyl ester, 1.4 × 107; di-s-butyl sulfide, 1.8 × 106; di- t -butyl sulfide, 1.3 × 105; and thioanisole, 2.3 × 106.  相似文献   

13.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

14.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

15.
Abstract— The rate constant k5/ > for physical quenching of singlet oxygen O21;) by the sensitizer in dye-sensitized photooxygenations is determined in the case of chlorophylls a and b (7.3 times 108, 4.2 times 108 M-1 s-1 respectively), pheophytins a and b (7.4 times 107, 3.0 times 107 M-1 s_1 respectively), tetraphenylporphyrin (4.4 times 107 M-1 s_1), magnesium tetraphenylporphyrin (5.0 times 108 M-1 s_1), zinc tetraphenylporphyrin (1.5 times 108 M-1 s_l) and protoporphyrin IX-dimethylester (9.1 times 107 M -1 s_1) in benzene. These sensitizers show a linear correlation between log ksO , and their half-wave oxidation potentials and the value of the slope is similar to that observed for various compounds such as phenols. It is concluded that (i) the interaction between chlorophylls and related compounds with singlet oxygen may involve an exciplex as for phenols, and (ii) physical quenching may be envisaged as a spin-orbit-induced intersystem crossing within the exciplex.  相似文献   

16.
Abstract— –Pulse radiolysis has been used to excite the triplet states of β-carotene (τ# 9μ sec) and lycopene (τ= 8μsec) in hexane solution, both in the presence and absence of naphthalene as a triplet sensitiser. The absorption spectra of both triplets have been measured in the range 430–550 nm and have thus been extended into the region of the corresponding singlet absorptions. The overlap of the triplet and singlet spectra is discussed in relation to in vivo studies. Extinction coefficients of 1.3±0.1 × 105 l/mole cm for β-carotene triplet 515 nm and 3.9±0.2 × 105 l/mole cm for lycopene triplet at 525 nm were obtained. Isomerisation of the all- trans polyenes used was detected and preliminary measurements indicate that the yield of isomerisation was greater than the triplet yield. The rate of triplet energy transfer from naphthalene to β-carotene was estimated to be 1.5 × 1010 l/mole sec. The corresponding value for lycopene was 1.4× 1010 l/mole sec. The measured efficient quenching of triplet β-carotene by oxygen may occur by an energy transfer mechanism, leading to the formation of singlet oxygen (1Δg. This would suggest that the triplet energy level of β-carotene lies between 121 and 94 kJ mole-1.  相似文献   

17.
CROCETIN, A WATER SOLUBLE CAROTENOID MONITOR FOR SINGLET MOLECULAR OXYGEN   总被引:1,自引:0,他引:1  
Abstract The water soluble carotenoid crocetin has been studied as a singlet molecular oxygen monitor in D2O solution, pD 8.4. Crocetin reacts chemically with singlet molecular oxygen with a rate constant of 4 x 108 M -1 s-1. The rate constant for total quenching, chemical and physical, is 2.5 x 109 M -1 s-1. Crocetin shows evidence for a reversible reaction with singlet molecular oxygen, as demonstrated by a fairly rapid absorption recovery after bleaching.  相似文献   

18.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

19.
Abstract. Using single picosecond laser pulses at 610 nm, the fluorescence yield (φ) of spinach chloroplasts as a function of intensity ( I ) (1012-1016 photons/pulse/cm2) was studied in the range of 21–300 K. The quantum yield decreases with increasing intensity and the φ vs I curves are identical at the emission maxima of 685 and 735 nm. This result is interpreted in terms of singlet exciton-exciton annihilation on the level of the light-harvesting pigments which occurs before energy is transferred to the Photosystem I pigments which emit at 735 nm.
The yield φ is decreased by factors of 12 and 43 at 300 and 21 K, respectively. The shapes of the φ vs I curves are not well accounted for in terms of a model which is based on a Poisson distribution of photon hits in separate photosynthetic units, but can be satisfactorily described using a one-parameter fit and an exciton-exciton annihilation model. The bimolecular annihilation rate constant is found to be γ= (5–15) times 10-9cm3s-1 and to exhibit only a minor temperature dependence. Lower bound values of the singlet exciton diffusion coefficient (≥ 10-3cm2s-1), diffusion length (≥ 2 times 10-6cm) and Förster energy transfer rates (≥ 3 ≥ 1010s-1) are estimated from γ using the appropriate theoretical relationships.  相似文献   

20.
Abstract— A sensitive near-infrared detection system incorporating improvements to existing methodologies has been used to characterize the sodium azide quenching of the steady-state luminescence of singlet molecular oxygen at 1270 nm. Stern-Volmer plots which were linear up to 80% quenching of the 1O2 generated by rose bengal and eosin Y yielded a rate constant of 5.8 ± 0.1 times 108 M −1 s−1 for the quenching of 1O2 in water, while the rate constants obtained in deuterium oxide with the same sensitizers were 6.28 times 108 M −1 s−1 and 6.91 times 108 M −1 s−1 respectively. A flow system minimized the effects of photobleaching of the rose bengal. With a mercury arc light source, the instrument can be used in photosensitization experiments to detect low levels of 1O2 production in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号