共查询到20条相似文献,搜索用时 15 毫秒
1.
采用有机化学合成法,利用正三辛基膦(TOP)辅助的快速注入生长方法,改进传统的制备工艺,实现了CdSe/CdS厚壳层核壳(8.6 ML)量子点复合材料的合成制备,并对所合成的核、核壳量子点及其复合材料的晶格结构、形貌特点与发光性质进行了XRD、TEM、SEM、UV-Vis、PL表征和红光补偿效果测试。测试结果表明,CdSe核具有立方纤锌矿晶格结构;CdSe/CdS量子点复合材料直径为45~75μm,呈菱形规则形貌,且颗粒分散性良好。采用该方法,可以提高量子产率,产率由4%(CdSe核)升至48%(CdSe/CdS核壳量子点);可以增强激子态发光能力,CdSe/CdS核壳量子点复合材料的荧光强度约为CdSe核的13倍。将该材料与YAG∶Ce~(3+)黄色荧光粉组合应用,获得了高光效(148.29 lm/W)、高显色指数(Ra为90.1,R9为97.0)的白光发光二级管,表明按照上述方法获得的CdSe/CdS核壳量子点复合材料在白光发光二极管中深红光波段具有较好的补偿效果。 相似文献
2.
采用化学共沉淀法制备了Eu3+掺杂摩尔分数不同、煅烧温度不同的SrWO4:Eu3+系列发光粉体, 所制备的粉体均具有Eu3+特征的强室温红光荧光发射. 通过调节煅烧温度和掺杂摩尔分数来调控近紫外和蓝光吸收强度, 进而调控用395 nm的近紫外光和465 nm的蓝光激发样品所得红光发光强度. 研究结果表明, 所制备的SrWO4:Eu3+红光荧光粉可以被紫外和蓝光发光二极管有效激
关键词:
稀土掺杂
4:Eu3+')" href="#">SrWO4:Eu3+
光致发光
白光发光二极管 相似文献
3.
通过高温固相法制得双峰可调节本征半导体发光BaZn2(BO3)2:Eu3+荧光粉,此类荧光粉在300~400 nm的紫外波段有很强的吸收。在375 nm的紫外光激发下,该荧光粉产生了两个宽带的发射峰,分别位于550 nm和615 nm处。并且,在395 nm的紫光激发下,荧光粉会由于Eu3+离子的5D0→7F2电偶极跃迁产生一个位于615 nm的强宽发射峰,这表明Eu3+离子占据了反演对称中心的位置,取代了BaZn2(BO3)2中部分的Ba2+离子。当Eu3+的摩尔分数达到10%时,发生浓度猝灭。在不同浓度的Eu3+离子的掺杂下,BaZn2(BO3)2:Eu3+荧光粉的发光从黄色延伸到红色,实现了荧光粉的色度可调。 相似文献
4.
采用高温固相法制备了Sr3Gd0.5-xTb0.5(BO3)3∶xEu3+系列荧光粉,并研究了其发光性质与能量传递过程。Sr3Gd0.5-xTb0.5(BO3)3∶xEu3+系列荧光粉在300~400 nm的近紫外光有效激发下产生489,544,594,614,624 nm的发射谱线,分别对应于Tb3+和Eu3+的特征跃迁。荧光寿命测试表明,随着Eu3+掺杂浓度的增大,Tb3+寿命逐渐缩短,证实该体系中存在Tb3+→Eu3+的能量传递过程,能量传递效率最大值为20.53%。在对Tb3+和Eu3+的能级结构进行分析的基础上,进一步探讨了Tb3+→Eu3+能量传递过程。Sr3Gd0.5-xTb0.5-(BO3)3∶xEu3+系列荧光粉具有良好的红色发光性质,是潜在的可以应用于白光LED的光转换材料。 相似文献
5.
近年来,铅卤钙钛矿CsPbX3 (X=Cl,Br或I)因其具有荧光波段可调、荧光量子产率高(Photoluminescence quantum yield,PLQY)以及荧光半峰宽窄等优点而被广泛应用于光电器件领域.然而,与PLQY接近于100%的绿光和红光相比,蓝光卤素钙钛矿的PLQY仍比较低.在此,采用过饱和结晶的方法在室温下合成了粒径低于4 nm的超小晶粒锡(Sn)掺杂CsPbBr3量子点,并对其结构特性和光学特性进行了研究.结果表明:随着SnBr2添加量的增大,量子点晶粒的粒径略微减小,荧光发射峰发生蓝移,粒径由3.33 nm (SnBr2为0.03 mmol)减小到2.23 nm(SnBr2为0.06 mmol时),对应的荧光发射峰由490 nm蓝移至472 nm.当SnBr2添加量为0.05 mmol时合成的超小晶粒锡掺杂CsPbBr3量子点显示出最优的光学性能,其粒径约为2.91 nm,对应的XRD各晶面衍射峰强度最强,... 相似文献
6.
利用高温固相法制备了Ba9Y2(SiO4)6:Ce3+,Mn2+(BYS:Ce3+,Mn2+)荧光粉,并通过X射线衍射(XRD)谱、激发和发射光谱及荧光寿命的测试对材料的结构、发光特性和能量传递进行了研究。在327 nm激发下,BYS:Ce3+,Mn2+发射光谱中包含2个发射峰,分别为位于407 nm的Ce3+的蓝紫光发射和位于597 nm的Mn2+的红光发射。在该体系中,发现了Ce3+向Mn2+的有效能量传递,使得Mn2+在597 nm处的红光发射显著提高,当x(Mn2+)=0.25时,BYS:Ce3+,xMn2+的能量传递效率可达39%。实验表明,该荧光粉可为紫外基白光LED提供良好的红光光源。 相似文献
7.
8.
采用固相反应法合成了Eu3+掺杂的α-Gd2(MoO4)3荧光粉。通过XRD、SEM以及激发和发射光谱对样品进行了研究,结果发现助熔剂为3%时样品的结晶较好,样品的发光强度最强,并且样品粉末不团聚。光谱测量的结果表明该荧光粉与其他商品荧光粉不同,其最有效的激发波长不在电荷迁移带范围,其f-f跃迁的465,395nm吸收更强,这就意味着该类荧光粉可作为目前已商品化的白光LED的红色补偿荧光粉,也可作为近紫外LED和三基色荧光粉组合型白光器件的红色荧光粉的候选材料。 相似文献
9.
采用传统的固相反应法制备了A位Y掺杂的多晶钙钛矿氧化物Sr1-xYxCoO3(x-0~0.30),系统研究了Y掺杂对体系结构、磁性和电输运性质的影响.X射线衍射结果表明室温下体系经过六方对称到立方对称再到四方对称的结构相变,x=0样品为六方结构,空间群为P63/mmc,0.05≤x≤0.15样品为立方对称结构,空间群为Pm3 m,x≥0.20样品为四方对称结构,空间群为I4/mmm,x=0.20时具有最大矫顽场Hc=4.6kOe.体系在外加磁场为1kOe下表现出如下磁性特征:x=0时Jc=163K,随着掺杂量的增加,转变温度呈现上升趋势,同时反铁磁性也随之增强.所有组分均表现出半导体特征,并且观察到复杂的磁电阻(MR)与温度变化关系:所有组分均表现出+MR与-MR共存的特征,当掺杂量为x=0.1时,在T=370K下表现出测量最大磁电阻的绝对值︱MR︳约为17%.Sr1-xYxCoO3样品遵循可变程传到模型,在150K≤T≤400K温度范围内ln(ρ)与T-1/4呈线性关系. 相似文献
10.
采用高温固相法制备了Ba9(Y2-xScx)(SiO4)6:Ce3+,Mn2+(x=0,0.5,1.0,1.5,2.0)样品。在该体系中,当Sc3+含量从x=0逐渐增加至x=2时,Ce3+的蓝光发射强度提高了1.7倍;同时,Mn2+的红光发射强度提高了1.9倍,显示了优良的红光特性。样品的发射光谱和漫反射光谱表明,Ce3+、Mn2+发射强度的增加与Ce3+吸收能力和Ce3+向Mn2+能量传递的提升有直接关系。研究了样品Ba9Sc2(SiO4)6:Ce3+,Mn2+的热稳定性。随着温度的升高,Mn2+的红光发射呈现先升后降的态势。当温度从室温升至488 K时,Mn2+发射强度仅下降至室温时的84%,表现出优良的热稳定性。高亮的红光发射和优良的热稳定性表明该荧光材料可为紫外基白光LED提供良好的红色光源。 相似文献
11.
面向市场对高功率照明的强烈需求,兼具优良光学和热/化学稳定性的全无机荧光玻璃陶瓷正蓬勃发展。本文基于低温共烧技术制备了一种镶嵌La3Si6N11∶Ce3+(LSN∶Ce)荧光粉的硅基氮化物玻璃陶瓷荧光转换材料。研究表明,共烧时玻璃组分对LSN∶Ce荧光粉侵蚀作用较小,荧光粉结构未受明显破坏,因而其荧光特性基本得以保持——量子效率为79%,150℃下荧光积分强度仅下降~14%。构建的高功率白光LED光源在350 mA电流驱动下,光效为54.8 lm/W,色温为5 712 K,显指为70.1,色坐标为(0.328 0,0.369 0)。构建的激光照明光源在0.8 W蓝光激光激发下,光通量为118.48 lm,色温为7 427 K,显指为56.2,色坐标为(0.298 2,0.322 6)。我们推断,在高功率蓝光激光激发时,LSN∶Ce荧光玻璃陶瓷中发生了热饱和与光饱和现象。经进一步的材料组分、制备工艺以及器件结构优化,LSN∶Ce荧光玻璃陶瓷可望应用于高功率照明领域,如汽车大灯和探照灯等。 相似文献
12.
为克服因混合不同卤化物钙钛矿量子点发生阴离子交换反应、不稳定的红光发射卤化物钙钛矿量子点等而导致在获取白光发射方面存在的不足,提出了一种可以在大气环境下合成Tb3+,Eu3+稀土离子共掺杂全无机卤化物钙钛矿量子点的方法。调节Tb3+,Eu3+稀土离子的掺杂比例,调控从钙钛矿量子点主晶格到Tb3+和Eu3+离子的能量转移,获得了单一组分、白光发射的钙钛矿量子点(Tb,Eu):CsPbCl3和(Tb,Eu):CsPb(Cl/Br)3,并对量子点的形貌、结构、发光性能及能量传递机理和稳定性进行了详细研究。研究结果表明:在365nm激光激发下,不同含量Tb3+/Eu3+离子共掺杂的钙钛矿量子点(Tb,Eu):CsPbCl3发射光谱对应的色坐标位于1931色度图中的白光区域。在进料比PbCl2∶TbCl3∶EuCl3为1∶1.5∶1时,量子产率为3.59%,比纯的CsPbCl3量子点的量子产率(0.57%)提高了6倍。进一步研究发现,该(Tb,Eu):CsPbCl3量子点在空气中储存2个月之后,量子产率几乎保持不变(3.63%),保持了良好的稳定性。此外,研究了采用不同溶剂(正辛烷、十八烯)合成Tb3+/Eu3+共掺杂钙钛矿量子点的发光特性。Tb3+/Eu3+离子共掺杂的钙钛矿量子点(Tb,Eu):CsPbCl3可实现单一组分的白光发射,有良好的稳定性,具备一定的应用前景。 相似文献
13.
采用固相反应法,制备了不同成分的稀释磁性半导体Sn1-xMnxO 2(x=002,004,006).利用x射线衍射和傅里叶变换红外光谱法证明 了锰均匀地掺杂到二氧化锡中.在室温下研究了掺锰二氧化锡基稀释半导体的磁性,发现它具有明显的铁磁性 ,同时对磁性的强弱与锰的含量和烧结温度的关系作了研究.
关键词:
稀释磁性半导体
掺杂
烧结
铁磁性
1-xMnx O2')" href="#">Sn1-xMnx O2 相似文献
14.
利用XRD、VUV及UV光谱等方法对Ce3+、Tb3+离子掺杂以及Ce3+、Tb3+离子共掺的3种BaCa2(BO3)2荧光粉的相纯度、发光性质、浓度猝灭现象进行研究。结果表明:3种荧光粉在VUV波段有较好的吸收,基质吸收带位于140~190 nm范围。Ce3+在BaCa2(BO3)2的最低4f5d跃迁带位置在360 nm附近,其5d→2FJ(J=5/2, 7/2)发射峰分别位于393,424 nm。Tb3+掺杂的样品在172 nm激发下的发射光谱由4个窄带组成,分别对应5D4→7FJ(J=3,4,5,6)的跃迁,其中占主导位置的是5D4→7F5的跃迁,大约位于543 nm处,主要为绿光发射。在Ce3+,Tb3+离子共掺杂的BaCa2(BO3)2光谱中,观察到Ce3+-Tb3+离子间有能量传递。 相似文献
15.
Y3Al5O12∶Ce3+荧光粉是目前白光LED的主要发光材料,但在使用时存在封装树脂因散热不佳而发生老化等问题。本文采用无压烧结制备了Y2MgAl4SiO12∶Ce3+透明陶瓷荧光体,用于替代荧光粉体和调控发光性能。首先通过化学共沉淀法制备前驱体粉体,经高温煅烧后采用冷等静压成型,最后在马弗炉中1 600℃煅烧制得透明荧光陶瓷。研究了Ce3+掺杂浓度和样品厚度对材料性能的影响,其中掺杂量为0.5%的样品在800 nm处具有56%的透过率,在450 K下发光强度仍能保持室温强度的84%。与蓝光芯片组装成器件测试表明,荧光陶瓷在蓝光LEDs/LDs的激发下发出白光,其CIE色度坐标分别为(0.307 6,0.332 9)和(0.308 0,0.331 6),光效分别为62.6 lm/W和146.3 lm/W。研究结果表明,YMAS∶Ce荧光陶瓷可应用于白光LEDs/LDs领域。 相似文献
16.
采用高温固相法制备了一系列具有双发射中心的Gd(2(1-x-y))ZnTiO6∶xBi3+,y Eu3+荧光粉。采用X射线衍射、扫描电子显微镜、荧光光谱、寿命衰减曲线和变温发射光谱等方法,系统地研究了该材料的结构、发光性能和温度传感特性。在Gd2ZnTiO6∶Bi3+,Eu3+荧光粉中,Bi3+和Eu3+离子占据了Gd3+离子的位置。在紫外激发下,Eu3+的激发光谱和Bi3+的发射光谱存在光谱重叠,表明从Bi3+到Eu3+可能存在能量传递。通过荧光强度比技术探究了Bi3+蓝光发射与Eu3+红光发射的不同温度响应特性。在293~473 K温度范围内,测得Gd2ZnTiO6∶Bi... 相似文献
17.
通过高温固相法制备了用于紫外激发白光LED的蓝绿色Ca7(SiO4)2Cl6∶Eu2+荧光粉,并对样品进行了XRD分析和发光性能测试。结果表明,合成的样品为单相Ca7(SiO4)2Cl6;在紫外光激发下,样品的发射谱包括418和502nm两个发射峰。分别监测这两个发射峰,得到了峰值位于290和360nm处的两个宽带激发谱,说明Eu2+离子在基质晶格中可能占有两个不同的格位。研究了Eu2+离子浓度对发光强度的影响,最佳掺杂浓度为0.75mol%。结果表明该荧光粉是一种较好的蓝绿色发光材料。 相似文献
18.
利用热压法将TiO2微粒掺入至YAG:Ce荧光粉和硅树脂中制备出远程荧光粉膜并封装成白光发光二极管(LED)器件, 通过荧光粉相对亮度仪、双积分球测试系统和可见光光谱分析系统对样品的光色性能及机理进行了研究. 结果表明: TiO2的散射效应能够显著提高蓝光的利用率和黄光的透射强度, 白光LED器件的光通量在TiO2浓度为0.966 g/cm3 时达到最高值415.28 lm(@300 mA, 9.3 V), 提高了8.15%, 相关色温从冷白6900 K逐渐变化至暖白3832 K. TiO2的掺入不仅提高了远程荧光粉膜的发射强度和白光LED器件的光通量, 同时能调控其相关色温. 相似文献
19.
采用高温固相法,以CaCO3 (A.R)、BaCO3 (A.R)、H3BO3 (A.R)和Eu2O3 (99.99%)为原料制备了Ba2Ca(BO3)2∶Eu2+绿色发光材料,测量了材料的晶体结构、发光特性及色坐标等。Ba2Ca(BO3)2∶Eu2+材料的激发光谱覆盖200~500 nm的紫外-可见光区。在400 nm近紫外光激发下,材料的发射光谱为一主峰位于537 nm的非对称宽谱,对应于Eu2+的4f65d1→4f7特征跃迁。研究发现,随Eu2+掺杂浓度的增大,Ba2Ca-(BO3)2∶Eu2+材料的发射强度呈现先增大、后减小的变化趋势,最大发射强度对应的Eu2+掺杂摩尔分数为2%。造成发射强度下降的原因为浓度猝灭,其机理为电偶极-电偶极相互作用。依据晶格常数及实验光谱数据,得出临界距离Rc分别为2.64 nm和2.11 nm。随Eu2+掺杂浓度的增大,Ba2Ca(BO3)2∶Eu2+材料的色坐标变化微小。计算得到Ba2Ca(BO3)2∶2%Eu2+的转换效率约为72%。 相似文献
20.
利用高温固相法在1 200℃制备了一系列红色荧光粉(Y1-x)6TeO12:x Eu3+(x=0.1~0.5)材料。对样品进行了X射线衍射、形貌特征、激发和发射光谱、浓度猝灭、热稳定性、荧光衰减曲线以及发光二极管封装与光色电性能等方面的分析与探究。结果表明:该红色荧光粉样品能被近紫外光(393 nm处)和蓝光(464 nm处)有效激发,在632 nm处表现出较强的红光发射。根据荧光强度与掺杂浓度的变化趋势,确定出最佳Eu3+掺杂量为x=0.3,更多的掺杂量引起浓度猝灭。进一步分析激活剂Eu3+间能量传递类型,得出电偶极-电偶极作用导致了浓度猝灭。(Y0.7)6TeO12:0.3Eu3+在150℃时积分发光强度是室温的76.5%,热激活能为0.196 9 eV。该样品的荧光寿命为813μs,色坐标值为(0.637 6,0.343 1),并基于板上芯片工艺进行了发光二极管封... 相似文献