首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(10):4549-4558
Divergent synthesis of medium-sized rings with controllable ring sizes represents a longstanding challenge in organic synthesis. Herein, we developed a transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates by controlling the steric hindrance of substituent. Different from reported alkoxide-triggered annulations, this process undergoes a regiodivergent allylation of para-quinone methides followed by 1,6-addition reaction, providing a new route to selectively synthesize seven- to ten-membered nitrogen-containing heterocycles in high yields with excellent regioselectivities. This protocol features a broad substrate scope, wide functional group tolerance as well as operational simplicity. The reaction mechanism was investigated by conducting a series of control experiments as well as DFT calculations and the origins of the regioselectivities of the cycloaddition process were rationalized.  相似文献   

2.
Here we report that Morita–Baylis–Hillman carbonates from diverse aldehydes and methyl vinyl ketones can be directly utilised as palladium-trimethylenemethane 1,4-carbodipole-type precursors, and both reactivity and enantioselectivity are finely regulated by adding a chiral ammonium halide as the ion-pair catalyst. The newly assembled intermediates, proposed to contain an electronically neutral π-allylpalladium halide complex and a reactive compact ion pair, efficiently undergo asymmetric [4 + 2] annulations with diverse activated alkenes or isatins, generally with high regio-, diastereo- and enantio-selectivity, and even switchable regiodivergent or diastereodivergent annulations can be well realised by tuning the substrate or catalyst assemblies. An array of control experiments, including UV/Vis absorption study and density functional theory calculations, are conducted to rationalise this new double activation mode combining a palladium complex and an ammonium halide as an ion-pair catalyst.

A double activation catalytic system combining a palladium complex and an ammonium halide was developed to promote the asymmetric [4 + 2] annulations of Morita–Baylis–Hillman carbonates of methyl vinyl ketone.  相似文献   

3.
The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported. The reaction proceeds smoothly to provide products bearing a quaternary stereocenter in excellent yields (up to 91% yield) with high levels of enantioselectivity (up to 94% ee). We further utilized the unique reactivity of the siloxy functionality to access chiral, highly oxygenated acyclic quaternary building blocks. In addition, we subsequently demonstrated the utility of these compounds through the synthesis of a lactone bearing vicinal quaternary-trisubstituted stereocenters.

The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported.  相似文献   

4.
Hexahydropyrazinoindoles were prepared in a single step from N-sulfonyl triazoles and imidazolidines. Under dirhodium catalysis, α-imino carbenes were generated and formed nitrogen ylide intermediates that, after subsequent aminal opening, afforded the pyrazinoindoles predominantly via formal [1,2]-Stevens and tandem Friedel–Crafts cyclizations. Of mechanistic importance, a regiodivergent reactivity was engineered through the use of a specific unsymmetrically substituted imidazolidine that promoted the exclusive formation of 8-membered ring 1,3,6-triazocines. Based on DFT calculations, an original Curtin–Hammett-like situation was demonstrated for the mechanism. Further derivatizations led to functionalized tetrahydropyrazinoindoles in high yields.

Hexahydropyrazinoindoles are prepared in a single step from N-sulfonyl triazoles and imidazolidines. Of mechanistic importance, a regiodivergent reactivity can be engineered towards the exclusive formation of 8-membered ring 1,3,6-triazocines.  相似文献   

5.
A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage. Compared to the simple N–H insertion manipulation of diazo, this method elegantly accomplishes a tandem N–H insertion/SEAr/C–C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.

A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage.  相似文献   

6.
The first catalytic formal [5+4] cycloaddition to prepare nine‐membered heterocycles is presented. Under palladium catalysis, the reaction of N‐tosyl azadienes and substituted vinylethylene carbonates (VECs) proceeds smoothly to produce benzofuran‐fused heterocycles in uniformly high efficiency. Highly diastereoselective functionalization of the nine‐membered heterocycles through peripheral attack is also demonstrated.  相似文献   

7.
The synthesis of diverse products from the same starting materials is always attractive in organic chemistry. Here, a palladium-catalyzed substrate-controlled regioselective functionalization of unactivated alkenes with trifluoroacetimidoyl chlorides has been developed, which provides a direct but controllable access to a variety of structurally diverse trifluoromethyl-containing indoles and indolines. In more detail, with respect to γ,δ-alkenes, 1,1-geminal difunctionalization of unactivated alkenes with trifluoroacetimidoyl chloride enables the [4 + 1] annulation to produce indoles; as for β,γ-alkenes, a [3 + 2] heteroannulation with the hydrolysis product of trifluoroacetimidoyl chloride through 1,2-vicinal difunctionalization of alkenes occurs to deliver indoline products. The structure of alkene substrates differentiates the regioselectivity of the reaction.

A palladium-catalyzed dual functionalization of unactivated alkenes with trifluoroacetimidoyl chlorides toward the synthesis of structurally diverse trifluoromethyl-containing indoles and indolines has been developed.  相似文献   

8.
Although nucleophilic benzylation-type reaction to introduce various aromatic systems into molecules has been widely explored, the related pyrrolylmethylation version remains to be disclosed. Reported herein is a palladium-catalysed multiple auto-tandem reaction between N-Ts propargylamines, allyl carbonates and aldimines in the presence of an acid, proceeding through sequential allylic amination, cycloisomerisation, vinylogous addition and aromatisation steps. A diversity of formal pyrrolylmethylated amine products were finally furnished efficiently. In addition, switchable regiodivergent 3-pyrrolylmethylation and 4-pyrrolylmethylation were realised by tuning catalytic conditions. Moreover, remote chirality transfer with readily available enantioenriched starting materials was well achieved with an achiral ligand, relying on diastereoselective generation of η2-Pd(0) complexes between Pd(0) and chiral 1,3-diene intermediates in the key vinylogous addition step. A few control experiments were conducted to elucidate the palladium-involved tandem reaction and regiodivergent synthesis.

A formal nucleophilic pyrrolylmethylation reaction was disclosed via a palladium-catalysed tandem reaction between propargyl amines, allyl carbonates and aldimines. Switchable regiodivergent synthesis and chirality transfer could be well achieved.  相似文献   

9.
A palladium-catalyzed C–O bond formation reaction between phenols and allenylic carbonates to give 2,3-allenic aromatic ethers with decent to excellent yields under mild reaction conditions has been described. A variety of synthetically useful functional groups are tolerated and the synthetic utility of this method has been demonstrated through a series of transformations of the allene moiety. By applying this reaction as the key step, the total syntheses of naturally occurring allenic aromatic ethers, eucalyptene and terricollene A (first synthesis; 4.5 g gram scale), have been accomplished.

A palladium-catalyzed C–O bond formation reaction between phenols and allenylic carbonates to give 2,3-allenic aromatic ethers with decent to excellent yields under mild reaction conditions has been described.  相似文献   

10.
Despite the blossoming of reports of diastereodivergent synthesis over the past years, switchable control of the stereochemistry of the bridgehead atoms of the fused frameworks has been significantly underdeveloped. Here we disclose the ability of Pd0-π-Lewis base catalysis to finely reverse the concerted inverse-electron-demand aza-Diels–Alder cycloaddition reaction between cyclic 1,3-dienes and aurone-derived 1-azadienes. In contrast, the in situ-formed HOMO-energy-increased Pd02-complexes of cyclic 1,3-dienes underwent a cascade vinylogous Michael addition/allylic amination process with 1-azadienes. Moreover, judicious selection of chiral ligands allowed for switchable diastereodivergent [4 + 2] annulations to be accomplished, resulting in the construction of both cis- and trans-fused tetrahydropyridine architectures in high yields with moderate to excellent stereoselectivity levels. A variety of acyclic 1,3-dienes and 1-heterodienes were also applied, and furnished a structural diversity of enantioenriched frameworks.

Diastereodivergent and asymmetric [4 + 2] annulations between cyclic 1,3-dienes and 1-azadienes via ligand-controlled Pd catalysis have been realized, furnishing both cis- and trans-fused tetrahydropyridines in good yields and stereoselectivity levels.  相似文献   

11.
The synthesis of diverse N-fused heterocycles, including the pyrido[1,2-a]indole scaffold, using an efficient pyrone remodeling strategy is described. The pyrido[1,2-a]indole core was demonstrated to be a versatile scaffold that can be site-selectively functionalized. The utility of this novel annulation strategy was showcased in a concise formal synthesis of three fascaplysin congeners.

The synthesis of diverse N-fused heterocycles, including the pyrido[1,2-a]indole scaffold, using an efficient pyrone remodeling strategy is described.  相似文献   

12.
A palladium-catalyzed hydroalkylation reaction of methylenecyclopropanes via highly selective C–C σ-bond scission was achieved under mild conditions, in which simple hydrazones served as carbanion equivalents. This method featured good functional group compatibility, affording high yields of C-alkylated terminal alkenes.

A palladium-catalyzed hydroalkylation of methylenecyclopropanes via selective C–C σ-bond scission was achieved, in which simple hydrazones served as carbanion equivalents. This method affords high yields of C-alkylated terminal alkenes with good functional group compatibility.  相似文献   

13.
A palladium-catalyzed C–H activation of acetylated anilines (acetanilides, 1,1-dimethyl-3-phenylurea, 1-phenylpyrrolidin-2-one, and 1-(indolin-1-yl)ethan-1-one) with epoxides using O-coordinating directing groups was accomplished. This C–H alkylation reaction proceeds via formation of a previously unknown 6,4-palladacycle intermediate and provides rapid access to regioselectively functionalized β-hydroxy products. Notably, this catalytic system is applicable for the gram scale mono-functionalization of acetanilide in good yields. The palladium-catalyzed coupling reaction of the ortho-C(sp2) atom of O-coordinating directing groups with a C(sp3) carbon of chiral epoxides offers diverse substrate scope in good to excellent yields. In addition, further transformations of the synthesized compound led to biologically important heterocycles. Density functional theory reveals that the 6,4-palladacycle leveraged in this work is significantly more strained (>10 kcal mol−1) than the literature known 5,4 palladacycles.

The combined experimental and computational study on palladium-catalyzed regioselective C–H functionalization of O-coordinating directing groups with epoxides is described.  相似文献   

14.
We report a 3-component reaction between N-benzyl ketimines, [1.1.1]propellane, and pinacol boronates to generate benzylamine bicyclo[1.1.1]pentane (BCP) pinacol boronates. These structures are analogous to highly sought diarylmethanamine cores, which are common motifs in bioactive molecules. We demonstrate the versatility of the boronate ester handle via downstream functionalization through a variety of reactions, including a challenging Pd-catalyzed (hetero)arylation that exhibits a broad substrate scope. Together, these methods enable the synthesis of high-value BCP benzylamines which are inaccessible by existing methods. Furthermore, we demonstrate the successful application of these newly developed (hetero)arylation conditions to a variety of challenging tertiary pinacol boronates, including nitrogen-containing heterocycles, 1,1-disubstituted cyclopropanes, and other BCP cores.

We report a 3-component reaction between N-benzyl ketimines, [1.1.1]propellane, and pinacol boronates to generate benzylamine bicyclo[1.1.1]pentane (BCP) pinacol boronates.  相似文献   

15.
Despite indisputable progress in the development of electrochemical transformations, electrocatalytic annulations for the synthesis of biologically relevant three-dimensional spirocyclic compounds has as of yet not been accomplished. In sharp contrast, herein, we describe the palladaelectro-catalyzed C–H activation/[3 + 2] spiroannulation of alkynes by 1-aryl-2-naphthols. Likewise, a cationic rhodium(iii) catalyst was shown to enable electrooxidative [3 + 2] spiroannulations via formal C(sp3)–H activations. The versatile spiroannulations featured a broad substrate scope, employing electricity as a green oxidant in lieu of stoichiometric chemical oxidants under mild conditions. An array of spirocyclic enones and diverse spiropyrazolones, bearing all-carbon quaternary stereogenic centers were thereby accessed in a user-friendly undivided cell setup, with molecular hydrogen as the sole byproduct.

Despite indisputable progress in the development of electrochemical transformations, electrocatalytic annulations for the synthesis of biologically relevant three-dimensional spirocyclic compounds has as of yet not been accomplished.  相似文献   

16.
A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed. This method enables convergent construction of complex epoxy-bridged polycyclic ring systems with five contiguous stereocenters with excellent exo-selectivity and broad substrate scope. The highly atom-economical process involves 6-endo-dig cyclization of carbonyl oxygen onto an activated alkyne resulting in a highly reactive metal–benzopyrylium intermediate, which readily undergoes intramolecular [3 + 2] annulation/hydration. Asymmetric induction is also achieved for the first time in Rh(i)-catalyzed 1,3-dipolar cycloaddition using an easily accessible chiral diene as the ligand.

A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed.  相似文献   

17.
Longeracemine, a member of the Daphniphyllum family of alkaloids contains a novel carbon framework featuring a highly functionalized 2-azabicyclo[2.2.1]heptane core as part of an overall 5/6/5/5/6/5 skeleton. A synthetic intermediate containing the core of longeracemine has been efficiently prepared by employing a stereoselective SmI2-mediated cascade reaction to advance a 7-azabicyclo[2.2.1]heptadiene to a 2-azabicyclo[2.2.1]heptene that is functionally poised for conversion to the natural product.

A synthetic intermediate containing the core of longeracemine, that is functionally poised for conversion to the natural product, has been efficiently prepared by employing a stereoselective SmI2-mediated cascade reaction.  相似文献   

18.
o-Carboryne (1,2-dehydro-o-carborane) is a very useful synthon for the synthesis of a variety of carborane-functionalized molecules. With 1-Li-2-OTf-o-C2B10H10 as the precursor, o-carboryne undergoes an efficient [4 + 2] cycloaddition with various conjugated enynes, followed by a subsequent [2 + 2] cycloaddition at room temperature, generating a series of carborane-fused tricyclo[6.4.0.02,7]dodeca-2,12-dienes in moderate to high isolated yields. This reaction is compatible with many functional groups and has a broad substrate scope. A reactive carborane-fused 1,2-cyclohexadiene intermediate is involved, which is supported by experimental results and DFT calculations. This protocol offers a convenient strategy for the construction of complex carborane-functionalized tricyclics.

An unprecedented tandem [4 + 2]/[2 + 2] cycloaddition of o-carboryne with enynes has been disclosed for the efficient synthesis of various carborane-fused tricyclics, in which a reactive carborane-fused 1,2-cyclohexadiene intermediate is involved.  相似文献   

19.
The first metal-catalyzed oxidative intermolecular 1,4-diamination of conjugated dienes has been developed. A series of medium ring compounds were constructed via palladium-catalyzed intermolecular [4+4] annulations. Oxygen was successfully used as an oxidant instead of the existing stoichiometric metals or hypervalent iodine reagents. 20 examples are reported, and good yields and regioselectivities could be obtained for the majority of diamines and conjugated diene substrates.  相似文献   

20.
We report herein the development of a palladium-catalyzed, multicomponent synthesis of indolizines. The reaction proceeds via the carbonylative formation of a high energy, mesoionic pyridine-based 1,3-dipole, which can undergo spontaneous cycloaddition with alkynes. Overall, this provides a route to prepare indolizines in a modular fashion from combinations of commercially available or easily generated reagents: 2-bromopyridines, imines and alkynes.

A palladium catalyzed, multicomponent synthesis of indolizines is described via the carbon monoxide driven generation of reactive, pyridine-based 1,3-dipoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号