共查询到20条相似文献,搜索用时 15 毫秒
1.
红色磷光微腔有机电致发光器件的发光性能 总被引:1,自引:0,他引:1
制备了结构为G/DBR/ITO/Mo O3(1 nm)/Tc Ta(55 nm)/CBP∶Ir(piq)2acac(44 nm,6%)/TPBI(55nm)/Li F(1 nm)/Al(80 nm)的红色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比器件OLED,研究微腔结构对磷光器件发光性能的影响。研究发现,OLED的电致发光(EL)峰值为626 nm,半高全宽(FWHM)为92 nm;MOLED的发光峰值为628 nm,FWHM为42 nm,窄化了1/2。MOLED的最大亮度、最大电流效率、最大外量子效率(EQE)分别为121 000 cd/m2、27.8 cd/A和28.4%,OLED的最大亮度、最大电流效率、最大EQE分别为54 500 cd/m2、13.1 cd/A和16.6%。结果表明,微腔器件的发光性能与无腔器件相比得到了较大幅度的提升。 相似文献
2.
将黄光磷光材料bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2’]iridium (acetylacetonate) [(t-bt)2Ir(acac)]超薄层作为黄光发光层,两个蓝光磷光染料iridium(Ⅲ) bis(4’,6’-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6)和bis[(4,6-difluorophenyl)-pyridinato-N,C2’](picolinate) iridium (Ⅲ) (FIrpic)掺杂层作为蓝光发光层,制备了三元发光层的白光有机电致发光器件。该器件具有三元磷光染料分子协同发光特性,并且利用合适厚度的隔层,将三线态激子束缚在各自激子复合区域内,获得了稳定电致发光光谱,CIE色坐标为(0.29±0.01, 0.34±0.01),处于理想的白光区域。通过器件电学特性的测试,验证了磷光染料在三元发光层器件中电致发光作用的机理,同时结果表明,三元发光层器件由于稳定的激子复合区域而有效减弱了器件效率滚降现象。 相似文献
3.
制备了结构为ITO/MoO3(40 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶GIr1(14%)∶R-4B(2%)(20 nm) /间隔层(3 nm)/ CBP∶GIr1(14%)∶R-4B(2%)(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm) 的有机电致发光器件,间隔层分别为CBP,TCTA,TPBI和BCP,GIr1和R-4B分别为绿红磷光材料。通过加入不同间隔层来调控载流子和激子在发光层内的分布并研究了其对器件发光性能的影响。研究表明TCTA,TPBI和BCP分别作为间隔层的器件较CBP为间隔层的参考器件,电压为6 V时,电流效率分别高出59%,79%和93%,以BCP为间隔层的器件效率最高达到22.58 cd·A-1;TPBI和BCP为间隔层相对于以TCTA为间隔层的器件,在较高的电流密度下,效率滚降更小。分析原因TCTA间隔层较高的LUMO能级和三线态能量将电子和激子限制在较窄的复合区域,提高了载流子相遇形成激子的概率,在较高电流密度下猝灭也更严重;TPBI和BCP由于具有较高的HOMO能级和电子传输能力,拓宽了激子的复合区域。间隔层引起电子或空穴的累积,形成较高的空间电场,有利于发光层相应载流子的注入与传输。由于发光层掺杂方式为红绿共掺,器件均获得了较好的色坐标稳定性。 相似文献
4.
以磷光染料Ir(piq)2(acac)作为发光掺杂剂,掺入空穴传输性主体材料NPB中得到红色发光层,荧光材料TBP掺入到主体CBP中作为蓝色发光层,制备了结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP/CBP:TBPe/BCP/ALq/Mg:Ag的双发光层白色有机电致发光器件.其中ALq3、未掺杂的NPB和CBP及BCP层分别作为电子传输层、空穴传输层和激子阻挡层.实验中通过调节发光层厚度及Ir(piq)2
关键词:
磷光
激子阻挡层
有机电致发光 相似文献
5.
制备了结构为ITO/MoO3(50 nm)/NPB(40 nm)/TCTA(10 nm)/CBP:14%GIr1(30 nm)/TCTA(x)/CBP:2%R-4B(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的红绿磷光有机电致发光器件,GIr1和R-4B分别为红、绿磷光染料。通过在红绿间插入较薄间隔层TCTA的方法,调节载流子、激子在红绿发光层中的分布,并结合TCTA和BCP对发光层内载流子和激子的有效阻挡作用,研究了载流子调控层TCTA在不同厚度下对器件发光性能的影响。结果表明,TCTA为1 nm时,器件的发光性能得到了很好的提升。电压为6 V时,TCTA为1 nm器件的电流密度、亮度、最大电流效率分别为0.509 mA/cm2、69.91 cd/m2和13.72 cd/A,而TCTA为0 nm器件的电流密度、亮度、最大电流效率分别为1.848 mA/cm2、215.7 cd/m2和11.67 cd/A。 相似文献
6.
研究利用溶液法制备的有机磷光双重掺杂体系电致发光器件的光致发光特性与电致发光特性,并研究了在这种体系中深能级陷阱导致的器件效率衰退现象。首先利用紫外光谱仪和光致瞬态寿命测试系统对基于旋涂法制备的以宽带隙材料4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP)为主体,绿色磷光材料tris(2-phenylpyridine) iridium(Ⅲ)(Ir(ppy)3)和红色磷光材料tris(1-phenylisoquinolinato-C2,N)iridium(Ⅲ)(Ir(piq)3)为客体材料的薄膜进行了光致发射光谱测试和薄膜在Ir(ppy)3发光峰516 nm处的光致发光寿命测试,实验发现在Ir(ppy)3掺杂比例保持定值时,随着深能级掺杂材料Ir(piq)3的引入,其光致发光光谱中Ir(ppy)3的相对发光强度减弱且发光寿命变短,当Ir(piq)3掺杂浓度继续提高时,薄膜光致发光光谱基本保持不变且Ir(ppy)3的发光寿命基本不变。实验说明在低浓度掺杂下两者的三线态能级之间存在着能量传递,但当掺杂浓度达到高浓度时,能量传递主要来自于主客体之间的传递,两者作为独立的发光中心发光。然后利用溶液法制备了发光层分别为CBP∶Ir(ppy)3,CBP∶Ir(ppy)3∶Ir(piq)3和CBP∶Ir(ppy)3∶PTB7的三组器件,器件结构为ITO/PEDOT∶PSS/Poly-TPD/EML/TPBi(15 nm)/Alq3(25 nm)/LiF(0.6 nm)/Al(80 nm)。在Ir(ppy)3和Ir(piq)3共掺杂器件和Ir(ppy)3单掺杂器件的对比实验中发现,加入一定比例的深能级材料后,器件的电致发光光谱发生改变,Ir(piq)3的相对发光强度增强,器件发光效率下降且效率滚降现象明显。通过对器件进行J-V测试,发现在Ir(ppy)3单掺杂器件中陷阱填充电流随着掺杂材料浓度的提高而提高,但在加入等浓度深能级材料Ir(piq)3后,陷阱填充电流基本保持一致。瞬态电致发光测试表明,随着Ir(ppy)3掺杂比例的提高,器件内由于陷阱载流子释放而产生的瞬时发光强度降低,这是由于Ir(ppy)3具有一定的传导电荷作用,会减少器件中的陷阱载流子,这进一步说明了具有较深能级的Ir(piq)3是限制载流子的主要能级陷阱。同时发现随反向偏压的增大,瞬态发光强度增大且发光衰减加速,这是因为位于深能级陷阱的载流子在高电压下被释放,重新复合发光,说明深能级陷阱的确限制住了大量载流子,而由于主体三线态激子具有较长的寿命,激子间相互作用产生的单线态激子在高反压下解离,从而引起三线态激子-极化子相互作用的加剧,导致发光衰减加速。在窄带隙聚合物材料PTB7与Ir(ppy)3共掺杂器件实验中发现,随着PTB7掺杂浓度提高,陷阱浓度变大且器件效率降低,具有较深能级的PTB7成为了限制载流子的深能级陷阱。因此说明在双掺杂有机磷光电致发光器件中,深能级材料会成为限制载流子的能级陷阱,引起载流子大量堆积,从而导致三线态激子与极化子相互作用加剧,使器件的发光效率衰退。 相似文献
7.
8.
9.
本文采用多发光层结构,制备了高亮度下具有高发光效率,同时在较宽亮度范围内发光颜色稳定的白色磷光有机电致发光器件(WOLED).在对双发光层结构磷光OLEDs的发光机制和载流子传输过程进行系统研究的基础上,将两种磷光OLEDs的发光层结构相结合,获得的多发光层结构磷光WOLED最大电流效率和外量子效率分别为34.6 cd/A和13.5%;当亮度为1000 cd/m^2时,其电流效率和外量子效率分别为33.9 cd/A和13.3%,外量子效率滚降仅为1.5%;亮度从1000 cd/m^2增至10000 cd/m^2的过程中,其CIE色度坐标从(0.342,0.403)变化至(0.326,0.392),变化量ΔCIE为(0.016,0.011). 相似文献
10.
采用多重量子阱结构制作了高效红色磷光有机电致发光器件。以4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP)掺杂bis(1-phenyl-isoquinoline)(Acetylacetonato) iridium(Ⅲ) (Ir(piq)2(acac))为发光层,4,4'-bis(N-carbazolyl)-1,10-biphenyl(Bphen)为电荷控制层,形成了Ⅱ型双量子阱结构,器件的最大亮度为15 000 cd/m2,最大电流效率为7.4 cd/A,相对于参考器件提高了21%。研究结果表明:以Bphen为电荷控制层形成的Ⅱ型多重量子阱结构能有效地将载流子和激子限制在势阱中,并且使空穴和电子的注入更加平衡,从而提高了载流子复合的几率和器件的效率。 相似文献
11.
具有分子间电荷转移激发态特性的激基复合物(Exciplex)体系,由于前线分子轨道的分离特性——最高占有轨道(Highest occupied molecular orbital,HOMO)集中分布于给体分子上,最低空轨道(Lowest unoccupied molecular orbital,LUMO)集中分布于受体分子上,因此具有极小的单线态-三线态能级差(ΔEst)以及热活化延迟荧光(Thermally activated delayed fluorescence,TADF)特性。因此,激基复合物体系的理论内量子效率可以达到100%。由于构建激基复合物体系的给体分子具有空穴传输特性,受体分子具有电子传输特性,因此,激基复合物体系具有平衡的载流子迁移特性,这使得激基复合物体系在作为发光层材料以及混合主体材料制备电致发光器件时具有平衡载流子迁移、扩大激子复合区域、提高器件效率以及降低效率滚降的优势。本文将讨论和总结基于激基复合物激发态体系的电致发光材料与器件基本原理、设计思路以及近期的研究进展。 相似文献
12.
为了提高掺杂型有机电致发光器件(OLED)中主体发光材料与客体荧光染料间能量传递的效率,2-对联苯-8-羟基喹啉锌(Zn 2)作为NPB : DCJTB掺杂体系的能量助传递剂,制备了结构如:ITO/NPB/NPB : DCJTB/Zn 2/BCP/Al的有机电致发光器件。助传递剂Zn 2的加入,能够两次利用Frster能量转移,实现NPB向DCJTB级联式的能量传递过程,提高低浓度时掺杂染料DCJTB红光发射的纯度;此外,还探讨了三者间能量传递的有效距离,即当助传递剂与掺杂体系的距离在小于10 nm的范围内,其参与能量传递的效率随着距离的增加而逐渐下降。 相似文献
13.
制备了结构为ITO/NPB/TCTA/FIrpic∶TCTA/Ir(MDQ)2(acac)∶TmPyPB/FIrpic∶TmPyPB/TmPyPB/LiF/Al的有机电致磷光发光器件。通过在双蓝光发光层之间插入较薄的红光层Ir(MDQ)2(acac)∶TmPyPB调节载流子、激子在各发光层中的分布,并结合TCTA和TmPyPB对发光层内载流子和激子的有效阻挡作用,混合实现白光发射。研究了红光层在不同厚度、不同掺杂浓度下对器件发光性能的影响。结果表明,红光发光层厚度为2nm、质量浓度为5%时,结合蓝光发光层和红光发光层,实现了色坐标为(0.333,0.333)、最大发光效率为11.50cd/A的白光发射。 相似文献
14.
以CBP为主体的高色纯度红色磷光有机电致发光器件 总被引:3,自引:1,他引:3
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于CBP材料的一系列红色电致磷光器件(PLED),其结构为ITO/CuPC(1nm)/Ir(piq)2(acac):CBP(25nm)/BCP(10nm)/Alq3(35nm)/LiF(1nm)/Al(100nm),对4种不同的掺杂剂浓度进行了比较,研究了它们的电致发光特性。得出了Ir(piq)2(acac)的最佳掺杂比为8%,此时器件的色坐标都非常接近标准红色,且色纯度超过了98%以上;在16V时,色坐标为(x=0.67,y=0.32),色纯度为99.74%,基本满足了全色显示对红色发光的要求。 相似文献
15.
绿色GIr1和红色R-4B磷光染料,采用红绿红、绿红、红绿、绿红绿等顺序,与主体材料CBP共蒸,制备了四种红绿磷光器件,并结合TCTA和BCP对载流子和激子的阻挡作用,研究了发光层掺杂顺序对器件性能的影响。结果表明,四种器件光谱、光效、亮度和发光颜色均有较大差异,且BCP和CBP界面附近是主要的激子复合区。在电压为5v,红绿红掺杂型器件,亮度、电流效率和色坐标分别为40.12 cd·m-2,7.68 cd·A-1 和(0.630 1,0.365 4);而绿红绿掺杂型器件为104 cd·m-2,19.75cd·A-1和(0.371 7,0.576 8)。分析认为:CBP与GIr1,R-4B,BCP,TCTA有较大的LUMO能级差异,发光层中电子的主要传输方式为掺杂分子上的俘获和分子间跳跃,不同掺杂顺序会形成不同能级势垒分布,发光层内电荷累积形成的空间电场分布不同。 相似文献
16.
具有减少自猝灭效果的铱配合物掺杂型红色聚合物磷光器件 总被引:1,自引:1,他引:1
将双(2-(2'-苯并 噻吩基)-5-三氟甲基吡啶)乙酰丙酮合铱配合物 及电子传输材料PBD掺杂到基质材料PVK中,利用旋涂的方法制备聚合物磷光器件。铱配合物的掺杂质量分数分别为8%、10%、15%及18%,当掺杂质量分数为15%时获得了最大外量子效率4.5%,而同样结构的经典的红光材料(btp)2Ir(acac)的掺杂质量分数为4%时最大外量子效率为3.3%。可以看出,含三氟甲基的新铱配合物制备的聚合物器件具有明显的减少浓度猝灭效果,这可能由于三氟甲基基团改变了分子堆积状态,减少了分子间相互作用的结果。该聚合物器件最大发射峰位648 nm,色坐标为(0.71,0.29), 没有PVK的蓝光发射峰。 相似文献
17.
作为空穴阻挡材料,BCP通常被用在蓝光以及白光有机电致发光器件中,其空穴阻挡能力随着其厚度的增加而增强;另一方面,在电场作用下,空穴也能隧穿厚度较薄的BCP层。为了深入了解BCP在多层有机电致发光器件中的作用,文章研究了不同电压下BCP层厚度对器件ITO/NPB/BCP/Alq3∶DCJTB/Alq3/Al电致发光光谱的影响。实验发现,较薄的BCP层可以部分地阻挡空穴并能调节能量在不同发光层之间的传递,从而容易获得白光器件;但该种结构器件的电致发光光谱随着电压的变化变动较大。当BCP层足够厚时,器件的电致发光光谱也变得相对较稳定; 当BCP的厚度为15 nm以上时,空穴就很难再隧穿过去。文章还讨论了不同电压下多层器件的电致发光光谱发生变化的原因。 相似文献
18.
通过对一种新型贵金属铱的配合物磷光材料(pbi)2Ir(acac)与咔唑共聚物进行物理掺杂, 制备了结构为indium-tin oxide(ITO)/poly(N-vinylcarbazole)(PVK): (pbi)2Ir(acac)(x)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)(20nm)/8-Hydroxyquinoline aluminum(Alq3)(10nm)/Mg:Ag的聚合物电致磷光器件,研究了磷光聚合物掺杂体系在低掺杂浓度时(0.1%和0.5%(质量百分数,全文同))的光致发光(PL)和电致发光(EL)特性. 结果表明, 该掺杂体系的PL光谱和EL光谱中均同时存在主体材料PVK与磷光客体(pbi)2Ir(acac)的发光光谱, 但主客体的发射强度不同,推测该掺杂体系在电致发光条件下, 同时存在主体材料到客体的不完全的能量传递和载流子直接俘获过程. 磷光掺杂浓度为0.1%的器件在19V电压下实现了白光发射, 色坐标为(0.32, 0.38), 掺杂浓度为0.5%的器件在20.6V电压下的最大发光亮度为11827 cd·m-2, 而在13.4V电压下的最大流明效率为4.13 cd·A-1.
关键词:
有机电致发光器件
铱配合物磷光
聚合物掺杂 相似文献
19.
有机发光二极管(Organic light emitting diode,OLED)作为新一代显示技术已经成功产业化,但兼具高效率和长寿命的蓝光OLED仍是亟待解决的问题。近年来,采用热活化延迟荧光(Thermally activated delayed fluorescence, TADF)材料敏化窄光谱荧光染料的热活化敏化荧光(TADF sensitized fluorescence,TSF)机制日益受到广泛关注。随着发光材料和器件结构的不断创新,基于该机制的蓝光OLED器件性能显著提升。本文围绕稳定高效蓝光敏化剂分子的设计开发,综述了近年来蓝光TSF器件在效率与寿命方面的进展,并进一步讨论了未来的发展目标以及面临的挑战。 相似文献