首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A very simple and selective spectrophotometric method for simultaneous determination of Co(II) and Ni(II) by 1-(2-pyridylazo) 2-naphthol (PAN), in micellar media, using H-point standard addition method (HPSAM) is described. The ligand and its metal complexes (Co(II)-PAN and Ni(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. Formation of both the complexes was complete within 10 min at pH 9 (adjusted by ammonia buffer). The linear range was 0.10-2.00 microg ml(-1) for Co(II) and 0.05-1.50 microg ml(-1) for Ni(II). The relative standard deviation (R.S.D.) for the simultaneous determination of 0.50 microg ml(-1) each of Co(II) and Ni(II) was 2.32 and 3.13%, respectively. Interference effects of common anions and cations were studied and the method was applied to simultaneous determination of Co(II) and Ni(II) in alloy samples. The method was compared with derivative spectrophotometric method.  相似文献   

2.
The H-point standard addition method (HPSAM) has been applied for the simultaneous determination of nickel and copper in trace levels, using 1-(2-pyridylazo)-2-naphthol (PAN) as a chromogenic reagent in aqueous Tween 80 micellar media. Under the optimum condition, the simultaneous determinations of nickel and copper by HPSAM were performed. The absorbances at one pair of wavelengths, 548 and 579 nm, were monitored with the addition of standard solutions of copper. The method is able to accurately determine copper-to-nickel ratios of 15:1 to 1:10 (Wt/Wt). The effects of diverse ions on the determination of nickel and copper to investigate the selectivity of the method were also studied. The recommended procedure was successfully applied to some water and alloy samples.  相似文献   

3.
A new procedure for the simultaneous spectrophotometric determination of Zn(II) and Ni(II) with 1-(2-pyridylazo)-2-naphthol as chromogenic reagent has been developed. It is based on resolution of the mixed spectrum over the wavelength range 530–590 nm by applying a least-squares fitting program to standard spectra from each component. The spectra are recorded at an apparent pH of 5.0, provided by an acetate buffer in a mixed 6040 v/v 2-ethoxyethanol/water medium. The relative standard deviations for determination of 13.7 g of Ni and 31.0 g of Zn were 1.9 and 1.0%, respectively (8 replications). The method has been applied to the analysis of iron surfaces coated with a Zn-Ni alloy. The results are compared with those obtained by atomic-absorption spectrophotometry.  相似文献   

4.
The H-point standard addition method (HPSAM) for simultaneous determination of Fe(II) and Fe(III) is described. The method is based on the difference in the rate of complex formation of iron in two different oxidation states with Gallic acid (GA) at pH 5. Fe(II) and Fe(III) can be determined in the range of 0.02–4.50 μg ml−1 and 0.05–5.00 μg ml−1, respectively, with satisfactory accuracy and precision in the presence of other metal ions, which rapidly form complexes with GA under working conditions. The proposed method was successfully applied for simultaneous determination of Fe(II) and Fe(III) in several environmental and synthetic samples with different concentration ratios of Fe(II) and Fe(III).  相似文献   

5.
Simultaneous determination of total iron and vanadium by H-point standard addition method (HPSAM) and partial least squares (PLS) is described. Gallic acid (GA) in a cationic micellar solution of CTAB was used for determination of iron and vanadium in different oxidation states at pH 5. The presence of a micellar system enables total iron and vanadium to be determined with improved sensitivities. The total relative standard error for applying the PLS method to 15 synthetic samples in the ranges 0.20–15.00 μg ml−1 iron and 0.20–8.00 μg ml−1 vanadium was 2.2%. The results of applying the H-point standard addition method showed that iron and vanadium can be determined simultaneously with the concentration ratios of iron to vanadium from 10:1 to 1:20 in the mixed sample. Both HPSAM and PLS methods showed suitable abilities to resolve accurately overlapped absorption spectra of the compounds. Both proposed methods were successfully applied to the determination of Fe and V in several synthetic alloy solutions.  相似文献   

6.
The H-point standard addition method (HPSAM), based on a spectrophotometric measurement for the simultaneous determination of hydrazine and acetylhydrazine, is described. This method is based on the difference between the rates of their reactions with N,N-dimethylaminobenzaldehyde (DAB) in the presence of sodium dodecyl sulfate (SDS) in acidic media. The results showed that hydrazine and acetylhydrazine could be determined simultaneously in the range of 0.020 - 0.70 and 0.20 - 5.0 mg L(-1), respectively. Under the working conditions, the proposed method was successfully applied to the simultaneous determination of hydrazine and acetylhydrazine in several synthetic mixtures and plasma and water samples.  相似文献   

7.
The H-point standard addition method (HPSAM), based on spectrophotometric measurements for simultaneous determination of beryllium and aluminium, is described. This method is based on the difference between their rates of reactions with Chrome Azurol S (CAS) in cetyltrimethylammonium bromide (CTAB) micellar media. The results showed that beryllium and aluminium could be determined simultaneously in the ranges of 10-200 and 10-300 ng mL(-1), respectively. Under working conditions, the proposed method was successfully applied to the simultaneous determination of beryllium and aluminium in environmental, geochemical and alloy samples.  相似文献   

8.
Afkhami A  Zarei AR 《Talanta》2004,62(3):559-565
H-point standard addition method (HPSAM) was applied to the simultaneous determination of hydrazine and phenylhydrazine. The method is based on the hydrazone formation reactions of hydrazine and phenylhydrazine in the presence of micellar sodium dodecyl sulfate (SDS). Mixed reagents of p-(dimethylamino)benzaldehyde (DAB) and p-nitrobenzaldehyde (NB) was used as selective chromogenic reagents for hydrazine and phenylhydrazine. Hydrazine and phenylhydrazine can be determined simultaneously in the range 0.020-0.50 and 0.20-10.0 μg ml−1, respectively. The results allowed that simultaneous determination could be performed with the ratio 1:500 to 1:10 hydrazine-phenylhydrazine. Under working conditions, the proposed method was successfully applied to the simultaneous determination of hydrazine and phenylhydrazine in several synthetic mixtures and plasma and water samples.  相似文献   

9.
A simple and sensitive method for spectrophotometric determination of lanthanum has been developed. At pH 9.6, in presence of 50% ethanol, lanthanum reacts with 1-(-2-pyridylazo)-2-naphthol (PAN) to form a red complex which has two absorption maxima, at 545 and 510 nm. The molar absorptivity at 545 nm is 0.55 × 104 liters · mol?1 cm?1. On the other hand, lanthanum reacts with PAN in pure ethanol to form a red complex at 530 nm, with high molar absorptivity (8 × 104 liters · mol?1 cm?1).  相似文献   

10.
The H-point standard addition method was applied to kinetic data for simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III). The method is based on the difference in the rate of complex formation between iron in two different oxidation states and methylthymol blue (MTB) at pH 3.5 in mixed cetyltrimethylammonium bromide (CTAB) and Triton X-100 micellar medium. Fe(II) can be determined in the range 0.25-2.5 microg ml(-1) with satisfactory accuracy and precision in the presence of excess Fe(III) and other metal ions that rapidly form complexes with MTB under working condition. The proposed method was successfully applied to the simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III) in spiked real environmental and synthetic samples with complex composition.  相似文献   

11.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Fe(III) and Fe(II) or selective determination of Fe(III) in the presence of Fe(II). The method is based on the difference in the rate of two processes; reduction of Fe(III) with Co(II) and subsequent complex formation of resulted Fe(II) with 1,10-phenanthroline, and direct complex formation between Fe(II) and 1,10-phenanthroline in pH 3 and cetyl trimethyl ammonium bromide, CTAB, micellar media. Fe(III) can be determined in the range of 0.75-5.13 mug ml(-1)with satisfactory accuracy and precision in the presence of excess Fe(II) under working conditions. The proposed method was successfully applied to the simultaneous determination of Fe(III) and Fe(II) and also to the selective determination of Fe(III) in the presence of Fe(II) in several synthetic mixtures containing different concentration ratios of Fe(III) to Fe(II).  相似文献   

12.
The H-point standard addition method (HPSAM) was applied to the simultaneous determination of zinc(II) and cobalt(II). This method is based on the difference in the absorbance of methylthymol blue complexes of Zn(II) and Co(II) at pH 6 buffered solution in different wavelength pairs. The results showed that Zn(II) and Co(II) can be determined simultaneously with concentration ratios of 20:1 and 1:7.5. Under working conditions, the proposed method was successfully applied to the simultaneous determination of zinc and cobalt in synthetic and real samples.  相似文献   

13.
The H-point standard addition method (HPSAM) was applied to the simultaneous determination of zinc(II) and cobalt(II). This method is based on the difference in the absorbance of methylthymol blue complexes of Zn(II) and Co(II) at pH 6 using different wavelength pairs. The results showed that Zn(II) and Co(II) can be determined simultaneously with concentration ratios of 20:1 and 1:7.5. Under working conditions, the proposed method was successfully applied to the simultaneous determination of zinc and cobalt in synthetic, drinking water and vitamin samples.  相似文献   

14.
H-point standard addition method (HPSAM) is suggested as a simple and selective method for the determination of semicarbazide and hydrazine. The reduction of Cu2+ to Cu+ by semicarbazide and hydrazine in the presence of neocuproine (Nc) and the subsequent complex formation between Cu+ and Nc produced a sensitive spectrophotometric method for indirect determination of semicarbazide and hydrazine. The difference in the rate of reduction of Cu2+ with semicarbazide and hydrazine in cationic micellar media is the basis of this method. Semicarbazide can be determined in the range of 0.5-3.75 μg ml−1 with satisfactory accuracy and precision in the presence of excess hydrazine. The proposed method was successfully applied to the simultaneous determination of semicarbazide (0.5-3.75 μg ml−1) and hydrazine (0.5-5 μg ml−1) and also to the selective determination of semicarbazide in the presence of hydrazine in several synthetic mixtures containing different concentration ratios of semicarbazide and hydrazine.  相似文献   

15.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

16.
A simple, sensitive and selective spectrophotometric method for the simultaneous determination of Co(II) and Pd(II) using partial least square (PLS) calibration and H-point standard addition method is described. The method is based on the complex formation of Co(II) and Pd(II) with 4-(2-pyridylazo) resorcinol (PAR) in acidic media and in the presence of sodium dodecyl sulfate (SDS) as a micellizing agent. Acidic media and the presence of a micellar system improve selectivity and sensitivity, respectively. By applying PLS calibration, Co(II) and Pd(II) can be determined in the range of 0.20-2.0 and 0.40-4.0 microg ml(-1), respectively. The relative errors of prediction for the determination of Co(II) and Pd(II) in the 10 prediction samples were 1.69 and 1.72%, respectively. The results of applying H-point standard addition method show that Co(II) and Pd(II) can be determined simultaneously with concentration ratio of Co(II) to Pd(II) varying between 7:1 and 1:8 in the mixed samples. Both proposed methods (PLS and HPSAM) were applied to the determination of Co(II) and Pd(II) in several alloy solutions with satisfactory results.  相似文献   

17.
A simple, sensitive and selective spectrophotometric method for simultaneous determination of tretinoin and minoxidil using partial least square (PLS) calibration and H-point standard addition method (HPSAM) is described. The results of the H-point standard addition method show that minoxidil and tretinoin can be determined simultaneously with the concentration ratio of tretinoin to minoxidil varying from 2: 1 to 1: 33 in mixed samples. A partial least squares multivariate calibration method for the analysis of binary mixtures of tretinoin and minoxidil was also developed. The total relative standard error for applying the PLS method to eleven synthetic samples in the concentration range of 0–10 μg mL−1 tretinoin and 0–32 μg mL−1 minoxidil was 2.59 %. Both proposed methods (PLS and HPSAM) were also successfully applied in the determination of tretinoin and minoxidil in several synthetic pharmaceutical solutions.  相似文献   

18.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Sb(V) and Sb(III) and also selectively determines Sb(V) in the presence of Sb(III). The method is based on the differences between rate of complexation of pyrogallol red with Sb(V) and Sb(III) at pH=2. Sb(V) can be determined in the range of 0.3-2.0 μg ml−1 with satisfactory accuracy and precision in the presence of excess Sb(III). Good selectivity was obtained over the variety of metal ions. The proposed method was used for determination of Sb(V) and Sb(III) in river and spring water samples.  相似文献   

19.
20.
The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号