共查询到20条相似文献,搜索用时 15 毫秒
1.
A new carbon film deposition technique, based upon excimer laser vaporization of graphite in a flowing gas system has been developed. The low temperature vapor (LTV) technique alleviates high temperatures occurring in most other deposition methods. In this technique the UV laser ablation occurs in an inert flowing gas atmosphere. Atoms and molecules evaporated from graphite are cooled by gas entrainment before condensing on a substrate. The resulting films of amorphous carbon or hydrogenated amorphous carbon are free from strain. Measurement of the optical band gap of these films shows that Eg can be controlled by the hydrogen content of the carrier gas. 相似文献
2.
3.
采用脉冲激光气相沉积(PLD)法,研究了氢气压强对非晶CH薄膜性能的影响。原子力显微镜图和白光干涉图显示,薄膜表面平整致密,随着氢气压强增大,粗糙度变大。拉曼光谱分析表明,氢气压强增加,G峰和D峰位置都在向高波数方向移动。傅里叶变换红外光谱分析显示,薄膜中存在sp3—CH2和sp2—CH等基团。最后,采用PLD漂浮法在最优参数氢气压强为0.3 Pa下,成功制备了不同厚度(100~300 nm)、满足一定力学强度、无明显宏观缺陷的自支撑CH薄膜。 相似文献
4.
T. Katsuno C. Godet J.C. Orlianges A.S. Loir F. Garrelie A. Catherinot 《Applied Physics A: Materials Science & Processing》2005,81(3):471-476
High-density tetrahedral amorphous carbon (ta-C) films have been prepared by nanosecond (17 ns) and femtosecond (150 fs) pulsed laser deposition (PLD) using fluences and repetition rates compatible with fast and homogeneous growth over large areas. Their optical properties were measured by spectroscopic ellipsometry from 1.0 to 4.7 eV and analyzed using a multi-layer Tauc-Lorentz model. In spite of very different ablation mechanisms, both PLD techniques produce high density bulk layers as revealed by a refractive index (n at 2 eV) of 2.7±0.1 for both fs-PLD and ns-PLD. Films are covered by a few nm-thick sp2-rich top layer which is denser and thicker in femtosecond PLD as compared to nanosecond PLD. The respective roles of low and high energies in the kinetic energy distribution of the incident carbon species are discussed in terms of densification and sp3↦sp2 configurational relaxation predicted by the subplantation growth model. The significantly higher optical gap found in the ns-PLD films is attributed to the larger contribution of energetic species with kinetic energies Ec≥200 eV, as revealed by time-of-flight optical studies. PACS 81.40.Tv; 81.05.Uw; 81.15.Fg 相似文献
5.
Han Liang Chen XianYang Li Wang YanwuWang Xiaoyan Zhao Yuqing 《Applied Surface Science》2011,257(15):6945-6951
The tetrahedral amorphous carbon (ta-C) films with more than 80% sp3 fraction firstly were deposited by filtered cathode vacuum arc (FCVA) technique. Then the energetic nitrogen (N) ion was used to bombard the ta-C films to fabricate nitrogenated tetrahedral amorphous carbon (ta-C:N) films. The composition and structure of the films were analyzed by visible Raman spectrum and X-ray photoelectron spectroscopy (XPS). The result shows that the bombardment of energetic nitrogen ions can induce the formation of CN bonds, the conversion of C-C bonds to CC bonds, and the increase of size of sp2 cluster. The CN bonds are made of CN bonds and C-N bonds. The content of CN bonds increases with the increment of N ion bombardment energy, but the content of C-N bonds is inversely proportional to the increment of nitrogen ion energy. In addition, C≡N bonds are not existed in the films. By the investigation of AFM (atom force microscopy), the RMS (root mean square) of surface roughness of the ta-C film is about 0.21 nm. When the bombarding energy of N ion is 1000 eV, the RMS of surface roughness of the ta-C:N film decreases from 0.21 to 0.18 nm. But along with the increment of the N ion energy ranging from 1400 to 2200 eV again, the RMS of surface roughness of the ta-C:N film increases from 0.19 to 0.33 nm. 相似文献
6.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible. 相似文献
7.
Joseph Lik Hang Chau Min-Chieh Yang Takahiro Nakamura Shunichi Sato Chih-Chao Yang Chung-Wei Cheng 《Optics & Laser Technology》2010,42(8):1337-1339
The growth of ZnO thin films on sapphire substrate using the femtosecond PLD technique is reported. The effect of substrate temperature and oxygen pressure on the structural properties of the films was studied. Highly c-axis oriented ZnO films can be grown on sapphire substrates under vacuum conditions using the femtosecond PLD process. There is an optimum substrate temperature for the pulsed laser deposition of ZnO film that enhances the thermodynamic stability and allows the formation of well-crystallized thin films. The crystal quality of the films can be further improved by increasing the deposition time and introducing oxygen during the pulsed laser deposition process. 相似文献
8.
Y. Aoi K. Sakurada E. Kamijo 《Applied Physics A: Materials Science & Processing》2004,79(4-6):1533-1536
Amorphous carbon nitride thin films were deposited by pulsed laser deposition combined with a nitrogen rf radical beam source. A structural characterization of the deposited films was performed using X-ray photoelectron and Raman-scattering spectroscopy. The Raman spectra showed that the dominant hybridization state of carbon atoms in the deposited film is sp2. N 1s electron spectra were deconvoluted into three components, N bonded to pyridine-like N and/or N-sp3C (N1), substitutional N in graphite (N2), and N-O and/or N-N (N3). The proportion of N1 increased with increasing N/C atomic ratio in the film. The electrical conductivity at room temperature decreased and the Tauc optical band gap increased with increasing N/C atomic ratio. The temperature dependence of the electrical conductivity indicated that electronic conduction occurred by variable range hopping between electron localized states. The decrease in electrical conductivity with increasing N/C atomic ratio was caused by a strong electron localization due to the increased proportion of N1. PACS 81.05.Uw; 81-15.Fg; 73.61.Jc 相似文献
9.
M. Bonelli A.C. Ferrari A. Fioravanti A. Li Bassi A. Miotello P.M. Ossi 《The European Physical Journal B - Condensed Matter and Complex Systems》2002,25(3):269-280
Tetrahedral amorphous carbon films have been produced by pulsed laser deposition, at a wavelength of 248 nm, ablating highly
oriented pyrolytic graphite at room temperature, in a 10-2 Pa vacuum, at fluences ranging between 0.5 and 35 Jcm-2. Both (100) Si wafers and wafers covered with a SiC polycrystalline interlayer were used as substrates. Film structure was
investigated by Raman spectroscopy at different excitation wavelength from 633 nm to 229 nm and by transmission Electron Energy
Loss Spectroscopy. The films, which are hydrogen-free, as shown by Fourier Transform Infrared Spectroscopy, undergo a transition
from mainly disordered graphitic to up to 80% tetrahedral amorphous carbon (ta-C) above a threshold laser fluence of 5 J cm-2. By X-ray reflectivity roughness, density and cross-sectional layering of selected samples were studied. Film hardness as
high as 70 GPa was obtained by nanoindentation on films deposited with the SiC interlayer. By scratch test film adhesion and
friction coefficients between 0.06 and 0.11 were measured. By profilometry we obtained residual stress values not higher than
2 GPa in as-deposited 80% sp3 ta-C films.
Received 25 June 2001 相似文献
10.
T. Wagner M. Krbal P. Nemec M. Frumar Th. Wagner Mil. Vlcek V. Perina A. Mackova V. Hnatovitz S.O. Kasap 《Applied Physics A: Materials Science & Processing》2004,79(4-6):1563-1565
A pulsed laser deposition technique has been applied to prepare amorphous ternary Ag–As–S films without an annealing process after the deposition. The films were prepared from AgAsS2 bulk glass using a KrF excimer laser. Energy-dispersive X-ray analysis and Rutherford backscattering were used to obtain the composition of the studied films. VASE ellipsometry has been used to determine optical properties and homogeneity of the index of refraction. Comparison of two models is presented. PACS 78.66.Jg; 81.15.Fg; 81.40.Wx 相似文献
11.
Manuel Pfeiffer Andy Engel Hagen Gruettner Katja Guenther Franka Marquardt Guenter Reisse Steffen Weissmantel 《Applied Physics A: Materials Science & Processing》2013,110(3):655-659
Ripple formation in consequence of ultrashort laser pulse irradiation of materials is a well-known phenomenon. We have investigated the formation of ripples in various metals, i.e. steel, tungsten carbide hard metal, as well as in superhard ta-C films, where we used femtosecond laser pulses of 775 nm and 387 nm mean wavelength and 150 fs pulse duration. The aim was to investigate how the ripple parameters depend on irradiation parameters, and if such ripples have a potentiality for applications. In the paper, we will show that on smooth surfaces the ripple orientation is perpendicular to the electric field vector of the linearly polarized laser beam, as is well-known. Moreover, it will be shown that the ripple period decreases with decreasing laser wavelength and/or increasing angle of incidence of the laser beam on the substrate. By using optimum parameters large areas of the materials and films can be rippled swiftly, which would be important for applications. For instance, the improvement of frictional and wear behavior of tribologically stressed surfaces by ripples was investigated on ta-C coated steel surfaces. 相似文献
12.
Hydrogen-free amorphous carbon films with hardness up to 75 GPa have been deposited by special pulsed arc techniques. The influence of plasma and deposition conditions on the film properties is discussed and some applications are shown. PACS 52.77.Dq; 68.60.-p; 81.15.Aa; 81.15.Ef; 81.70.Ex 相似文献
13.
P. Písařík M. Jelínek T. Kocourek M. Zezulová J. Remsa K. Jurek 《Applied Physics A: Materials Science & Processing》2014,117(1):83-88
Diamond-like carbon (DLC) and Cr-doped diamond-like carbon layers were studied. DLC and Cr-DLC were deposited on silicon and titanium substrates (Ti-6Al-4V) by dual-pulsed laser ablation using two KrF excimer lasers and two targets (graphite and chromium). The composition was analyzed using wavelength-dependent X-ray spectroscopy. The Cr content increased from 2.2 to 17.9 at%. The topology and surface properties as roughness of layers were studied using scanning electron microscopy and atomic force microscopy. With the chromium concentration increased the roughness and the number of droplets. Carbon and chromium bonds were determined by Raman spectroscopy. With an increase in chromium content the I D/I G ratio increased. Mechanical properties of DLC films with various chromium content were evaluated. Hardness (reduced Young’s modulus) was determined by nanoindentation and reached of 51 GPa (309 GPa). Films adhesion was studied using scratch test and with concentration of chromium increased up to 20 N. 相似文献
14.
Z. Geretovszky Z. Kántor I. Bertóti T. Szörényi 《Applied Physics A: Materials Science & Processing》2000,70(1):9-11
CNx (0.01-2 to 0.6 mbar the nitrogen content of the films increases monotonously, as determined by X-ray photoelectron spectroscopy. Raman spectroscopy reveals that the films consist predominantly of highly amorphous carbon. 相似文献
15.
采用螺旋波等离子体化学气相沉积技术以N2/SiH4/H2为反应气体制备了镶嵌有纳米非晶硅颗粒的氢化氮化硅薄膜,通过改变N2流量实现了薄膜从红到蓝绿的可调谐光致发光.傅里叶红外透射和紫外-可见光吸收特性分析表明,所生长薄膜具有较高的氢含量,N2流量增加使氢的键合结构发生变化,非晶硅颗粒尺寸减小,所对应的薄膜的光学带隙逐渐增加和微观结构有序度减小.可调光致发光(PL)主要来源于纳米硅颗粒的量子限制效应发光,随N2流量增加,PL的谱线展宽并逐渐增强.
关键词:
傅里叶红外透射谱
光吸收谱
纳米硅粒子镶嵌薄膜
光致发光 相似文献
16.
We report the first observation, to our knowledge, of a glassy carbon (GC) layer modified from diamond-like carbon (DLC) films with femtosecond (fs) laser pulses. The GC layer, which is confirmed by Raman spectroscopy, is produced most efficiently at low laser fluence near the ablation threshold of the DLC films. This surface modification depends little on the laser polarization and wavelength used. The fs laser-induced GC layer should be a new thin-film material useful for a variety of engineering applications due to its characteristics similar to those of DLC and the additional properties inherent in GC. PACS 61.80.Ba; 79.20.Ds; 42.62.Cf 相似文献
17.
Preferentially-oriented aluminum nitride (AlN) films are grown directly on natively-oxidized Si (100) substrate by pulsed laser deposition (PLD) in nitrogen (N2) environment. The AlN preferential orientation changes from (002) to (100) with increasing N2 pressure. Such different behaviors are discussed in terms of deposition-rate-dependent preferential orientation, kinetic energy of depositing species and confinement of laser plume. Finally, sample deposited at 0.9 Pa is proved to have the highest (002) peak intensity, the lowest FWHM value, the highest deposition rate and a relatively low RMS roughness (1.138 nm), showing the optimal growth condition for c-axis-oriented AlN growth at this N2 pressure. 相似文献
18.
Jing Li Yinzhu Jiang Guohua Bai Tianyu Ma Deren Yang Youwei Du Mi Yan 《Applied Physics A: Materials Science & Processing》2014,115(3):997-1001
Amorphous MgO thin films were prepared by pulsed laser deposition (PLD) under various oxygen pressures. The structural, magnetic, and optical properties of the films were investigated. All as-deposited samples exhibit room temperature ferromagnetism, which depend strongly on oxygen pressure. It is found that the saturation magnetization (M s) initially increases with the oxygen pressure, the maximum M s of 8.57 emu/cm3 is obtained for the MgO film deposited under an oxygen pressure of 2 mTorr. However, the M s significantly reduces at higher oxygen pressures. Further X-ray photoelectron spectroscopy and photoluminescence demonstrate that the long-range magnetic order in amorphous MgO films can be attributed to the nonstoichiometry effect and the presence of Mg vacancies. 相似文献
19.
Martin Pavlišta Martin Hrdlička Petr Němec Jan Přikryl Miloslav Frumar 《Applied Physics A: Materials Science & Processing》2008,93(3):617-620
Amorphous chalcogenide thin films were prepared from As2Se3, As3Se2 and InSe bulk glasses by pulsed laser deposition using a KrF excimer laser. Thickness profiles of the films were determined
using variable angle spectroscopic ellipsometry. The influence of the laser beam scanning process during the deposition on
the thickness distribution of the prepared thin films was evaluated and the corresponding equations suggested. The results
were compared with experimental data. 相似文献
20.
Pure hydrogenated amorphous carbon (α-C:H) and nitrogen doped hydrogenated amorphous carbon (α-C:H:N) thin films were prepared using end-Hall (EH) ion beam deposition with a beam energy ranging from 24 eV to 48 eV. The composition, microstructure and mechanical properties of the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning probe microscopy (SPM), and nano-scratch tests. The films are uniform and smooth with root mean square roughness values of 0.5-0.8 nm for α-C:H and 0.35 nm for α-C:H:N films. When the ion energy was increased from 24 eV to 48 eV, the fraction of sp3 bonding in the α-C:H films increased from 36% to 55%, the hardness increased from 8 GPa to 12.5 GPa, and the Young's modulus increased from 100 GPa to 130 GPa. In the α-C:H:N films, N/C atomic ratio, the hardness and Young's modulus of the α-C:H:N films are, 0.087, 15 and 145 GPa, respectively. The results indicate that both higher ion energy and a small amount of N doping improve the mechanical properties of the films. The results have demonstrated that smooth and uniform α-C:H and α-C:H:N films with large area and reasonably high hardness and Young's modulus can be synthesized by EH ion source. 相似文献