首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic tensile experimental techniques of high-strength alloys using a Kolsky tension bar implemented with pulse shaping and advanced analytical and diagnostic techniques have been developed. The issues that include minimizing abnormal stress peak, determining strain in specimen gage section, evaluating uniform deformation, as well as developing pulse shaping for constant strain rate and stress equilibrium have been addressed in this study to ensure valid experimental conditions and obtainment of reliable high-rate tensile stress–strain response of alloys with a Kolsky tension bar. The techniques were applied to characterize the tensile stress–strain response of a 4330-V steel at two high strain rates. Comparing these high-rate results with quasi-static data, the strain rate effect on the tensile stress–strain response of the 4330-V steel was determined. The 4330-V steel exhibits slight work-hardening behavior in tension and the tensile flow stress is significantly sensitive to strain rate.  相似文献   

2.
The torsional split Hopkinson bar is used for testing materials at strain rates above 104s−1. This strain rate, which is an order of magnitude higher than is typical with this technique, is obtained by using very short specimens. Strain rates of 6.4×104s−1 have been achieved with specimens having a gage length of 0.1524 mm. Results from tests on 1100 aluminum show an increase in rate sensitivity as the strain rate increases.  相似文献   

3.
The effects of strain rate and temperature on the tension stress–strain responses of polycarbonate are experimentally investigated over a wide range of strain rates (0.001–1700 s−1) and temperatures (0–120 °C). A modified split Hopkinson tension bar is used for high-rate uniaxial tension tests. Experimental results indicate that the stress–strain responses of polycarbonate at high strain rates exhibit the nonlinear characteristics including the obvious yielding and strain softening. The tension behavior is strongly dependent on the strain rate and temperature. The values of yield stress and strain at yield present a dramatic increase at higher strain rates and decrease with the increase in temperature. Moreover, there exists a significant rate-sensitivity transition in the polycarbonate tension yield behavior. Based on the experimental investigation, a physically based three-dimensional elastoplastic constitutive model for the finite deformation of glassy polymers is used to characterize the rate-temperature dependent yield and post-yield behavior of polycarbonate when subjected to tension loading. The model results are shown close to the experimental data within the investigated strain-rate and temperature ranges.  相似文献   

4.
A machine for testing thin-walled tubes in torsion at shear-strain rates up to 25/sec is described. Results of constant and variable-strain-rate tests are presented for 1100-0 aluminum, AISI 1020 steel, and 50-A titanium. Results indicate that 1100-0 aluminum is very slightly strain-rate sensitive, but steel and titanium are noticeably sensitive to both strain rate and strain-rate history. Variable-rate tests show that subsequent dynamic loading on a statically prestrained specimen causes an increase in the flow stress in steel and a decrease in the flow stress in titanium.  相似文献   

5.
The hot deformation behavior of porous FVS0812 aluminum alloy prepared by spray deposition was studied by means of compression tests on a Gleeble 1500 machine. The samples were hot compressed at temperatures ranging from 573 K to 773 K under various true strain rates of 10−4–100 s−1. The deformation behaviors are characterized by a significant strain hardening during hot-compression due to the progressive compaction of the pores with increasing compressive strain. A revised formula describing the relationships of the flow stress, strain rate and temperature of the porous alloy at elevated temperatures is proposed by compensation of strain. The theoretical predictions are compared with experimental results, which show good agreement.  相似文献   

6.
A combined experimental and analytical investigation has been performed to understand the mechanical behavior of two amorphous polymers—polycarbonate and poly(methyl methacrylate)—at strain rates ranging from 10−4 to 104 s−1. This range in strain rates was achieved in uniaxial tension and compression tests using a dynamic mechanical analyzer (DMA), a servo-hydraulic testing machine, and an aluminum split-Hopkinson pressure bar. DMA tension tests were used to characterize the viscoelastic behavior of these materials, with focus on the rate-dependent shift of material transition temperatures. Uniaxial compression tests on the servo-hydraulic machine (10−4 to 1 s−1) and the split-Hopkinson pressure bar (103 to 104 s−1) were used to characterize the rate-dependent yield and post-yield behavior. Both materials were observed to exhibit increased rate sensitivity of yield under the same strain rate/temperature conditions as the β-transition of the viscoelastic behavior. A physically based constitutive model for large strain deformation of thermoplastics was then extended to encompass high-rate conditions. The model accounts for the contributions of different molecular motions which become operational and important in different frequency regimes. The new features enable the model to not only capture the transition in the yield behavior, but also accurately predict the post-yield, large strain behavior over a wide range of temperatures and strain rates.  相似文献   

7.
High temperature (298 K–573 K) and high strain rate (4000 s−1) compression experiments were performed on a cryomilled ultra-fine grained (UFG) Al-5083 using a modified Kolsky bar with a heating system designed to reduce “cold contact” time. The resulting stress strain curves show a reduction in strength of approximately 300 MPa at the highest temperature tested. This softening has been related to a thermally activated deformation mechanism. In addition, an experimental procedure was developed to investigate the microstructure evolution during the preheating, prior to mechanical loading, so as to identify the intrinsic mechanical response of the material at high temperatures. The results of this procedure are in good agreement with a TEM study on material that has been heated but not loaded.  相似文献   

8.
顾然  王强  侯亮  索涛 《实验力学》2014,29(5):543-548
在室温下,利用分离式Hopkinson拉杆系统进行了平行和垂直流线方向切割的铝合金2A70圆棒试样的高应变率(1300~2300/s)拉伸实验;利用分离式Hopkinson压杆系统进行了圆柱试样的高应变率(1100~11000/s)压缩实验,分析了应变率与试样切割方向对试样力学性能的影响,并对比研究了不同应变率下试样断口的形貌。实验结果表明,铝合金2A70的屈服强度在应变率达到11000/s时会得到一定提高;垂直流线切割的试样强度略高于平行流线切割的试样;随应变率升高,拉伸试样的断口更为平滑,颗粒细密,但压缩试样会形成环状的粗晶区。最后基于实验数据拟合了J-C(Johnson-Cook)本构模型参数。  相似文献   

9.
In order to predict the high-temperature deformation behavior of Al-Zn-Mg-Cu alloy, the hot compression tests were conducted in the strain rate range of (0.001–0.1)s−1 and the forming temperature range of (573–723) K. Based on the experimental results, Johnson-Cook model was found inadequate to describe the high-temperature deformation behavior of Al-Zn-Mg-Cu alloy. Therefore, a new phenomenological constitutive model is proposed, considering the coupled effects of strain, strain rate and forming temperature on the material flow behavior of Al-Zn-Mg-Cu alloy. In the proposed model, the material constants are presented as functions of strain rate. The proposed constitutive model correlates well with the experimental results confirming that the proposed model can give an accurate and precise estimate of flow stress for the Al-Zn-Mg-Cu alloy investigated in this study.  相似文献   

10.
Partition of plastic work into heat and stored energy in metals   总被引:9,自引:0,他引:9  
This study investigates heat generation in metals during plastic deformation. Experiments were designed to measure the partition of plastic work into heat and stored energy during dynamic deformations under adiabatic conditions. A servohydraulic load frame was used to measure mechanical properties at lower strain rates, 10–3 s–1 to 1 s–1. A Kolsky pressure bar was used to determine mechanical properties at strain rates between 103 s–1 and 104 s–1. For dynamic loading, in situ temperature changes were measured using a high-speed HgCdTe photoconductive detector. An aluminum 2024-T3 alloy and -titanium were used to determine the dependence of the fraction of plastic work converted to heat on strain and strain rate. The flow stress and for 2024-T3 aluminum alloy were found to be a function of strain but not strain rate, whereas they were found to be strongly dependent on strain rate for -titanium.  相似文献   

11.
在293~873 K的环境下,采用分离式霍普金森杆装置对高氮钢试样进行了102~103 s-1应变率下的动态加载实验。结合准静态实验结果,分析了应变率和温度对材料塑性流动特性的影响。结果表明:高氮钢的动态力学行为具有很强的应变率敏感性和温度敏感性。当应变率达到400 s-1或更高时,流动应力随应变率的增加显著升高;在同一应变率下,流动应力随温度的降低明显升高。研究了温度和应变率耦合效应对材料塑性行为的影响,得出温度软化效应在高氮钢高温动态塑性变形中起主导作用。基于经典的Johnson-Cook(J-C)模型,通过对实验数据的分析,得出了高氮钢材料的修正J-C本构方程,经验证修正J-C方程预测结果与实验结果吻合。  相似文献   

12.
Using a focal plane array infrared camera, the heat generated during large strain compression (at a rate of 1 s−1) is used to study the characteristics of plastic flow for hcp zirconium. Heat generation during plastic flow in a reference material, copper, was seen to develop uniformly both at the lower (40 μm/pixel) and higher (8 μm/pixel) magnifications used in this study. The thermomechanical response of Zr, however, was seen to depend on the loading direction with respect to the specimen texture. Highly textured zirconium compressed along nonbasal oriented grains results in a homogeneous thermal response at both scales. However, compression along basal (0001) oriented grains shows evidence of inhomogeneous deformation at small strains that lead to macroscale localization and failure at large strains. The conversion of plastic work into heat is observed to be a dynamic process, both in the time-dependent nature of the energy conversion, but also in the passage of waves and ‘bursts’ of plastic heating. Basal compression also showed evidence of small scale localization at strains far below macroscale localization, even below 10%. These localizations at the lower strain levels eventually dominate the response, and form the shear band that is responsible for the softening of the macroscopic stress–strain curve.  相似文献   

13.
An experimental study is undertaken to examine the dynamic stress–strain characteristics of ligaments from the human cervical spine (neck). Tests were conducted using a tensile split Hopkinson bar device and the engineering strain rates imposed were of the order of 102∼103/s. As ligaments are extremely soft and pliable, specialized test protocols applicable to Hopkinson bar testing were developed to facilitate acquisition of reliable and accurate data. Seven primary ligaments types from the cervical spines of three male cadavers were subjected to mechanical tests. These yielded dynamic stress–strain curves which could be approximated by empirical equations. The dynamic failure stress/load, failure stain/deformation, modulus/stiffness, as well as energy absorption capacity, were obtained for the various ligaments and classified according to their location, the strain rate imposed and the cadaveric source. Compared with static responses, the overall average dynamic stress–strain behavior foreach type of ligament exhibited an elevation in strength but reduced elongation.  相似文献   

14.
The behavior of the flow stress of Al-Cu-Mg-Ag heat-resistant aluminum alloys during hot compression deformation was studied by thermal simulation test. The temperature and the strain rate during hot compression were 340-500 °C, 0.001 s−1 to 10 s−1, respectively. Constitutive equations and an artificial neural network (ANN) model were developed for the analysis and simulation of the flow behavior of the Al-Cu-Mg-Ag alloys. The inputs of the model are temperature, strain rate and strain. The output of the model is the flow stress. Comparison between constitutive equations and ANN results shows that ANN model has a better prediction power than the constitutive equations.  相似文献   

15.
Thepressure-shear plate impact technique is used to study material behavior at high rates of deformation. In this technique, plastic waves of combined pressure and shear stresses are produced by impact of parallel plates skewed relative to their direction of approach. Commercially pure alpha-titanium and 6061-T6 aluminum are tested under a variety of pressure and shear tractions by using different combinations of impact velocities and angles of inclination. A laser interferometer system is used to monitor simultaneously the normal and transverse components of motion of a point at the rear surface of the target plate. The experimental results are compared with numerical solutions based on an elastic/viscoplastic model of the material. Both isotropic and kinematic strain hardening models are used in the computations. The results indicate that unlike the normal velocity profiles, the transverse velocity profiles are sensitive to the dynamic plastic response and, thus, can be used to study material behavior at high strain rates. For the materials tested the results suggest that the flow stress required for plastic straining increases markedly with increasing strain rate at strain rates above 104s?1. Hydrostatic pressure of the order that exists in the tests (up to 2 GPa) does not affect the plastic flow in 6061-T6 aluminum and appears to have at most a minor effect on the deformation of the titanium.  相似文献   

16.
An anionic polyacrylamide solution was characterized in elongational flow by combining laser-Doppler velocimetry to determine the strain rate in the flow direction and the two-color flow-induced birefringence method to measure the first normal stress difference along the axial centerline of a hyperbolic die. The elongational rate was constant along the axial centerline of the planar hyperbolic die as long as vortices at the die entrance did not occur. The transient elongational viscosity μ + was determined as a function of the elongational rate. The parameters varied are the Hencky strain rate and the polymer concentration. μ + showed a pronounced increase over the linear viscoelastic behavior above critical Hencky strains of 1.2 to 1.5; that is, a significant strain hardening could be observed for polyacrylamide solutions. This strain hardening is stronger the higher the elongational rate. A slight enhancement of strain hardening was found by increasing the concentration from 0.5 to 1 g/l. The stress optical coefficient was determined as 1.8 × 10−7 Pa−1 (0.5 g/l) and 1.2 × 10−7 Pa−1 (1 g/l).
Helmut MünstedtEmail:
  相似文献   

17.
In a dynamic experiment to obtain the high-rate stress–strain response of a ductile specimen, it takes a finite amount of time for the strain rate in the specimen to increase from zero to a desired level. The strain in the specimen accumulates during this strain-rate ramping time. If the desired strain rate is high, the specimen may yield before the desired rate is attained. In this case, the strain rates at yielding and early plastic flow are lower than the desired value, leading to inaccurate determination of the yield strength. Through experimentation and analysis, we examined the validity and accuracy of the flow stresses for ductile materials in a split Hopkinson pressure (SHPB) bar experiment. The upper strain-rate limit for determining the dynamic yield strength of ductile materials with a SHPB is identified.  相似文献   

18.
The split Hopkinson pressure bar (SHPB) technique is analyzed during the initial stages of loading by means of axisymmetric finite element simulations of dynamic compression tests. Limiting strains as functions of the test parameters such as the specimen diameterd and heighth were found to ensure a one-dimensional stress state and axial stress homogeneity in specimens of elastic-perfectly plastic material. The one-dimensional stress state is necessary and sufficient for accurate test results for flat specimens (h/d≤0.5) and nonflat specimens, respectively, with diameters up to half of the bar diameter. Only very small values of the Coulomb friction constraint (μ≈0.01) seem to be acceptable. The significance of the determined limiting conditions to the more practical case of a rate dependent material is investigated using an elastic-viscoplastic material for the specimen. The stress and strain rate reconstructed from the calculated bar signals (according to the SHPB analysis) are compared with stresses and strain rates averaged over the cross section of the specimen. Well-known inertia corrections improve the results of the SHPB procedure, but errors remain for small strains and highly time dependent strain rates.  相似文献   

19.
A Kolsky bar: Tension,tension-tension   总被引:1,自引:0,他引:1  
The present paper introduces a new technique which combines rotation disk and traditional Kolsky bar (often termed as split-Hopkinson bar). This technique can be employed to study the tension stress-strain relations and tension-unloading-tension strain-rate history effects of materials in the strain rate range from 102–103s−1. The rise time of the incident wave is as short as 15 μs because of the particular design. An attempt is made to estimate strain error caused by the thread connection between the specimen and the bars, and stress error due to the mismatch of the cross section of the specimen and bars. A short rise-time incident wave appears to be most advantageous in view of maintaining the accuracy of the stress-strain curve obtained near the initiation. Preliminary tests are performed on the instrument. Comments are made for this design configuration. M. Li (Student Member of SEM), presently at the Department of Aerospace Engineering, Mechanics and Engineering Science, University of Florida, Gainesville, FL 32611, was Research Associate; R. Wang (formerly A.J. Wang) is Professor; and M.-B. Han is Associate Professor, Department of Mechanics, Peking University, Beijing 100871, P.R. China.  相似文献   

20.
A rigorous experimental and numerical assessment is made of the benefits and limits of miniaturization in the Kolsky bar system. The primary issues that arise in very high strain rate testing (stress equilibration, inertial effects, wave dispersion, friction, and controllability of deformations) are addressed through experiments coupled with explicit finite element analyses. A miniaturized Kolsky bar system that includes the input bar is developed, together with the use of the laser occlusive radius detector to obtain local measurements of specimen strain during the very high rate deformations. It is demonstrated that this miniaturized Kolsky bar system can be used to provide fully validated results, including the explicit determination of equilibration, over a very wide range of strain rates (1×103 to 5×104 s−1). The desired high strain rate can be achieved even at low accumulated strains, and the total strain developed can be controlled very effectively. Specific conditions are developed for determining the range of utility of the technique for a given material. The technique is applied to the characterization of 6061-T651 aluminum, and the results are compared with the results obtained using a conventional Kolsky bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号