首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在阳极多孔氧化铝模板中利用层层自组装技术制备出了高度有序的聚电解质磺化酞菁铜(CuTsPc)/4,4′-联吡啶盐酸盐(DPDCH)纳米管, 并对其组装过程用UV-Vis, XRD和FT-IR进行了分析, 纳米管的微观形貌通过SEM和TEM进行表征. 结果表明, 第一层 CuTsPc和第二层DPDCH在AAO模板上的沉积平衡时间均约为60 min, 沉积过程主要有三个阶段: 模板孔外的吸附过程、孔内扩散控制的沉积过程和孔内表面沉积控制过程. CuTsPc主要以磺酸根吸附于AAO模板上. CuTsPc/DPDCH纳米管为非晶态体系. CuTsPc/DPDCH纳米管的外径和壁厚分别为200和20 nm, 外径受控于AAO模板的孔径, 壁厚与组装的层数有关, 利用此方法还可以制备其他带有相反电荷的有机小分子对纳米管或纳米线.  相似文献   

2.
TiO2/SiO2 composite nanotube photocatalysts supported on Al substrates were prepared by the anodic aluminum oxide (AAO) liquid-phase deposition method for degradation of 100 mg/L methyl blue (MB). AAO templates were prepared in H3PO4 acidic electrolytes through the two-step anodic oxidation method. The photocatalysts were characterized by field-emission scanning electron microscopy, thermal analysis (TG-DTA), and Fourier-transform infrared, x-ray photoelectron, and UV?CVis diffuse spectroscopies. The results showed that the presence of SiO2 in TiO2 inhibited the crystal phase transformation temperature effectively, with a greater wall thickness of 80?C100 nm. It was found that Ti?CO?CSi bonds were formed on the surface and the surface hydroxyl concentration was increased, resulting in enhanced photocatalytic activity, being about 20% higher than for pure TiO2 films. The calculated band structure for TiO2/SiO2 was investigated using first-principle calculations. The TiO2/SiO2 composite exhibited a wider conduction band which would effectively prohibit recombination of photogenerated electrons and holes.  相似文献   

3.
刘宸 《化学研究》2012,(2):59-63
以无机多孔氧化铝膜为模板,利用气相沉积和原位电化学沉积方法成功地制备了有机-无机杂化聚吡咯/硫化镉核壳纳米线;采用扫描电子显微镜和透射电子显微镜分析了聚吡咯/硫化镉核壳纳米线的表面形貌和微结构.结果表明,内部的聚吡咯纳米线紧紧依附在外部的硫化镉纳米管中,并且硫化镉纳米管被聚吡咯全部填充.与此同时,在聚吡咯/硫化镉核壳纳米线中,外部硫化镉壳与内部聚吡咯核之间存在电荷转移;聚吡咯和硫化镉之间形成有机-无机杂化的P-N界面,从而导致单根聚吡咯/硫化镉核壳纳米线显示出不同于外部壳和内部核的整流特性.  相似文献   

4.
Titanium dioxide (TiO2) nanotubes are fabricated into anodic aluminum oxide (AAO) membrane via atomic layer deposition (ALD). For the ALD of TiO2, gaseous precursors, titanium (IV) isopropoxide and water are sequentially applied and chemically reacted with each other. A thickness of nanotubes is precisely controlled by the applied cycle numbers of ALD and the morphology of nanostructures is investigated by SEM and TEM. The amorphous property of TiO2 nanostructures is revealed by XRD and the composition of nanotubes is measured by TEM–EDX. The impurity contents and binding structure of the nanostructures are analyzed by XPS. The electrostatic capacitance of TiO2 nanotubes into AAO is 480 μF/cm2 and it is about 3 times higher compared with AAO membrane (172 μF/cm2).  相似文献   

5.
低频交流电沉积金纳米线阵列的AFM研究   总被引:3,自引:0,他引:3  
迄今,人们已采用许多方法制备纳米材料,如刻蚀技术、化学法和模板法等[1].其中,引起科学界广泛兴趣的模板法,在合成有序纳米材料上占有极其重要的地位.常用的模板有两种,一种是有序孔洞阳极氧化铝(Anodic Aluminum Oxide,AAO)模板[2],另一种是含有孔洞无序分布的高分子模板.AAO模板具有耐高温,绝缘性好,孔洞分布均匀有序,而且大小可控等特点[3].可以利用 AAO模板来制备各种纳米纤维和纳米管,如导电聚合物[4]、金属[5]、半导体[6]、碳[7]和其它一些材料.由于纳米材料的应用具有广阔的前景,如光催化、电化学、酶固定等方面,因而不同材料纳米线的制备备受关  相似文献   

6.
Au/TiO2/Ti electrode was prepared by a two-step process of anodic oxidation of titanium followed by cathodic electrodeposition of gold on resulted TiO2. The morphology and surface analysis of Au/TiO2/Ti electrodes was investigated using scanning electron microscopy and EDAX, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 60–90 nm in diameter, and the electrode surface was covered by gold particles with a diameter of about 100–200 nm which are distributed evenly on the titanium dioxide nanotubes. This nanotubular TiO2 support provides a high surface area and therefore enhances the electrocatalytic activity of Au/TiO2/Ti electrode. The electrocatalytic behavior of Au/TiO2/Ti electrodes in the glucose electro-oxidation was studied by cyclic voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the glucose oxidation than that of gold electrode.  相似文献   

7.
In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.  相似文献   

8.
Based on anodic aluminum oxide (AAO) templates prepared in different acidic solutions, highly ordered aligned titania nanotubes array films have been successfully prepared by the liquid phase deposition method. The effect of AAO template type on the microstructure of titania film have been studied. Using the template with a certain volume fraction of Al2O3 (less than 0.71), ordered aligned titania nanotubes were obtained, characterized with an outer diameter of 200 nm and an inner diameter of 100 nm, respectively. However, titania existed as ordered aligned nanorods with the diameter of 100 nm when the template with large volume fraction of Al2O3 (larger than 0.71) was used. TiO2 thin films calcined at 400°C for 4 h have an anatase phase and exhibit good photocatalytic activity, i.e., 75% methylene blue could be degraded under ultraviolet irradiation for 2 h.  相似文献   

9.
MENG  Xiuxia  YANG  Naitao  TAN  Xiaoyao 《中国化学》2009,27(10):1925-1928
Polyelectrolyte nanotubes of poly(sodium 4‐styrene‐sulfonate) (PSS) with cationic poly(diallyl dimethyl ammonium chloride) (PDDA) (PSS/PDDA) were fabricated by a pressure‐filter‐template technique using microporous anodic aluminum oxide (AAO) as the template. UV‐Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and infrared spectroscopy (FT‐IR) were applied to characterize the obtained PSS/PDDA nanotubes. The results have shown that the PSS/PDDA nanotubes exhibit an amorphous structure and have the outer diameter of 200 nm and length of 25 µm respectively, which are in good agreement with the dimensions of the AAO template pores. The wall thickness of the nanotubes may be controlled by the number of the self‐assembled layers. Formation of the nanotubes follows a layer‐by‐layer (LbL) mechanism due to the electrostatic interactions, where the SO?3 groups of PSS are first adsorbed on the Lewis acid sites of AAO template pores.  相似文献   

10.
Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.  相似文献   

11.
Polypyrrole (PPy) nanotubes with highly uniform surface and tunable wall thickness were fabricated by one-step vapor deposition polymerization (VDP) using anodic aluminium oxide (AAO) template membranes, and transformed into carbon nanotubes through a carbonization process.  相似文献   

12.
The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3?M oxalic acid, 0.3?M sulfuric acid, and 2?wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5?wt.% H3PO4 used for alumina dissolution.  相似文献   

13.

The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3 M oxalic acid, 0.3 M sulfuric acid, and 2 wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5 wt.% H3PO4 used for alumina dissolution.

  相似文献   

14.
A novel method to fabricate composition- and topology-controlled ZnO/TiO2 inverse opals (IO) films using a positive sacrificial ZnO IO template has been developed. This method includes a two-step process, preparation of ZnO IO by a simple electrochemical deposition using a self-assembly polystyrene colloidal crystal template and preparation of ZnO/TiO2 IO by a liquid phase deposition (LPD) process at room temperature. The composition and topology of ZnO/TiO2 IO can be easily controlled by changing the duration of the LPD. After 20 min LPD process, a ZnO/TiO2 composite IO with non-close-packed face-centered cubic air sphere array was obtained. Prolonging the duration to 60 min, a pure TiO2 IO (TIO-LPD60) with obviously thickened walls was formed. The formation mechanism for the compositional and topological variation was discussed. A preliminary study on UV photocatalytic property of the samples for degradation of methylene blue reveals that the composition and topology significantly influenced the photocatalytic activity of the IO film. The ZnO/TiO2 composite IO demonstrates a higher degree of activity than both pure ZnO and pure TiO2 IO, although they have a similar IO wall thickness. Moreover, with increasing IO wall thickness from ~52 nm to ~90 nm, TIO-LPD60 exhibits the highest level of photocatalytic performance.  相似文献   

15.
本文采用电化学阳极氧化法以含氟的甘油和水混合溶液为电解液在纯钛表面制备了一层排列规整的TiO2纳米管阵列,研究了电解液中额外添加3种2价阴离子、不同的电解时间及不同的添加物浓度等因素对所获得的TiO2纳米管阵列形貌的影响。结果表明,在改性电解液中制备的TiO2纳米管阵列的长度均超过了未改性的电解液中制备的,并随着氧化时间的增长,纳米管管口直径增大,管壁变薄;同时添加的(NH4)2TiF6浓度在0.025~0.1 mol.L-1范围内均可获得管长更长且形貌较好的TiO2纳米管阵列。  相似文献   

16.
The current study demonstrates how the etching step in anodization process effects on the photocatalytic activity of TiO2 nanotubes. In this regard, the TiO2 nanotubes were made by one-step and two-step anodization process on two different substrates Ti and etched-Ti foils, respectively. The results revealed that two-step anodization process is a beneficial way to prepare highly well-organized structure and regular surface. The two-step anodization by an enhancement in the fluoride ions diffusion led to a decrease in nanotubes' porosity and an increment in the nanotubes’ surface area, a factor of roughness, and the ratio of length to diameter, respectively. As a consequence of the improvement in geometrical properties, the two-step TiO2 nanotubes led to the intensification of photocurrent density (from 0.383 to 0.677 mA cm−2) and photoconversion efficiency (from 0.18% to 0.29%) in comparison with the one-step nanotubes, respectively. Further, a synergetic impact of the photoelectrochemical measurement and photocatalytic process was observed. The degradation efficiencies of 2,4-dichlorophenol by two-step nanotubes increased from 47 to 55% under visible light, and from 58 to72% under UV irradiation, which it was attributed to more light harvesting, more photo-generated electrons, higher separation efficiency and improvement in geometrical properties. Furthermore, the kinetic study showed that the reactions follow first-order kinetics and the reaction rate constants by two-step nanotubes are 1.25 and 1.44 times as great as those of one-step nanotubes under visible and UV irradiation, respectively. Moreover, the reusability tests showed that 2-step TiO2 nanotubes has good stability and is active even up to the Fifth run.  相似文献   

17.
本工作采用CVD法在阳极氧化TiO2纳米管阵列膜表面沉积一层非晶Si膜,通过退火后得到晶化了的Si膜/TiO2纳米管阵列的复合结构,并初步就其光催化还原CO2制备碳氢化合物的活性进行研究。拉曼光谱(Raman)、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、高分辨透射电子显微镜(TEM)等微结构表征结果表明所制备的TiO2纳米管阵列的厚度为270 nm左右,管直径约为70 nm,管壁厚度约为16 nm。覆盖的Si膜已晶化,其厚度约为300 nm。通过高效液相色谱(HPLC)及总有机碳(TOC)来检测光催化还原液相产物中的甲酸及总有机碳含量,发现负载Si膜后的TiO2纳米管阵列光催化性能有所提高,在装有400cut滤光片氙灯照射2 h下TOC含量从21.2 mg.L-1增长到29.5 mg.L-1,表明Si与TiO2的复合可有效的提高光催化还原CO2的活性,这可能与该异质结结构可增加对光的吸收并且可降低光生空穴-电子对复合有关。光催化循环实验表明所制得的催化剂在循环5次后仍可保持91.6%的催化活性。  相似文献   

18.
Structural and photoelectrochemical characterization of multiwall carbon nanotubes–titanium oxide (MWCNT-TiO2) matrices, sensitized with bismuth sulfide (Bi2S3), are presented as a function of MWCNT-TiO2 annealing temperature and Bi2S3 deposition time. Random matrices of multiwall carbon nanotubes were grown on stainless steel substrates by spray pyrolysis and then functionalized with a thin layer of TiO2. Air annealing modifies the morphology and C/TiO2 ratio in the hybrid materials, from MWCNT-TiO2 core and shell structures at 400 °C to carbon-doped TiO2 (C-TiO2) at 550 °C. Both matrices increase the amount of Bi2S3 deposited by the chemical bath, but the best photoelectrochemical performance is observed in electrodes based on C-TiO2. Electrodes based on core–shell structures of MWCNT-TiO2 show large capacitive currents that interfere with photocurrent generation, demonstrating the storage potential of MWCNT and the critical role of MWCNT/TiO2 ratio for photoelectrochemical applications. Regardless of the superior properties of C-TiO2 photoanodes, the power conversion efficiency of Bi2S3-sensitized C-TiO2 is limited by the appearance of an electron collection barrier at the substrate/film interface.  相似文献   

19.
The silicon oxycarbide Si/O/C nanotubes were prepared by two-step procedure. First, a nanostructure deposit mainly composed of nanocables with germanium core was synthetized by low pressure chemical vapor deposition (LPCVD) using hexamethyldigermane Ge2Me6 and 1,1,3,3-tetramethyldisilazane (Me2SiH)2NH as the volatile precursors. Second, LPCVD was followed by annealing at 850 °C in vacuum to evaporate germanium core. As a result Si/O/C nanotubes were formed. Various techniques such as Raman spectroscopy, TEM, SEM/EDX, XPS and HRTEM were used to study the physical and chemical properties.  相似文献   

20.
具有特异电学性质的分子结的制备及电子输运特性研究是分子电子学领域中的主要内容,对构筑分子电子器件具有重要意义.但是,由于分子结的尺度通常在100nm以下,这使得分子结的低缺陷制备和准确有效的电学特性研究面临困难.目前,自组装方法已经成为降低分子结缺陷的主要手段,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号