共查询到12条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
不需要训练序列的盲均衡技术可以有效地节省水声通信带宽,消除码间干扰,提高水声通信效率和质量。以前馈神经网络(FNN)作为盲均衡器,既适用于最小相位信道,也适用于非最小相位信道,包括非线性信道,但是前馈神经网络在实际的应用中其网络拓扑结构的选取和初始权重的确定缺乏理论依据,且其训练主要依靠BP算法,存在收敛速度慢、容易陷入局部极值及“过学习”的问题。为此,本文提出了一种遗传优化神经网络的水声信道盲均衡算法(GA—BP),对前馈神经网络拓扑结构和网络权重同时优化,有效地克服了传统前馈神经网络盲均衡的缺陷,提高了前馈神经网络盲均衡的泛化性能并加强了跟踪时变信道的能力和对信道突变的适应能力。水池试验结果证明了文中提出的遗传优化神经网络水声信道盲均衡算法的有效性,与直接前馈神经网络盲均衡相比较,均衡性能明显得到了提高。 相似文献
5.
基于对修正的常数模算法(MCMA)进行分析,提出了一种用于QPSK(四进制相移键控)信号的快速载波恢复盲均衡算法。该算法中构造了一种与MCMA算法不同的、能够快速收敛的误差函数,在消除码间干扰(ISI)、纠正相位误差的同时,进一步改善了收敛性能。该算法对输出信号的实部和虚部分别进行非线性变换。最后利用实测的水声信道数据,对这几种算法进行了数值分析研究,结果表明:所提出的算法不仅能够很好地克服相位旋转,而且其收敛速度明显高于MCMA,剩余均方误差更小,而计算量并没有明显的增加。 相似文献
6.
7.
8.
针对常数模和判决引导双模式盲均衡算法切换时机选择困难问题,提出了一种并联滤波的双模式融合盲均衡算法。算法以并联滤波器作为盲均衡器,两路子滤波器分别以常数模算法准则和判决引导算法准则进行更新,通过加权因子实现两种算法模式自适应切换,完成两种算法的融合处理,加权因子依据归一化均方误差进行调整。为防止信道突发干扰,定义了归一化均方误差信息熵增量,以信息熵增量为判据适时实现均衡器和加权因子重置,使算法在信道突发干扰条件下能实现自适应跟踪。计算机仿真和水池试验处理结果表明:该算法有效地结合了常数模和判决引导算法的优点,具有较好的均衡性能。 相似文献
9.
水声信道多途效应明显,造成接收信号存在严重的码间干扰(ISI,Intersymbol interference)。基于最小均方误差(MMSE,Minimum mean square error)准则的turbo均衡器级联了均衡和信道译码,能够有效去除ISI,并获得优良的性能。由于水声信道的时变性,传统MMSE-turbo均衡需要周期性的训练序列,以实现连续可靠的通信。训练序列虽然提高了通信的可靠性,但降低了信息的有效传输速率。因此,为提高通信效率,本文提出了一种盲turbo均衡方法,该方法通过引入新的盲信道辨识器来同时获得信道估计响应和已去除部分ISI的初步均衡输出信号,并为turbo均衡提供初始的响应参数和比特软信息。与水声通信中应用较多的盲判决反馈均衡器(DFE,Decision feedback equalizer)相比,海上实验结果证明本文提出的盲turbo均衡方法抗信道多途衰落的能力较强,并且与传统MMSE-turbo均衡相比无需训练序列,因此提高了信息的有效传输速率。 相似文献
10.
11.